Aim. The aim of this paper is to create a 3D model of the undeformed chips produced during the cutting of an internal gear ring. By modelling the power skiving process, it is necessary to investigate the influence of various geometric and technological parameters on the thickness and cut area of the chips produced. Method. By simulating the gear turning process, it is possible to reproduce the cutting of the gear teeth and accurately determine the geometric parameters and the shape of the undeformed chip at each moment. A model of the workpiece and cutting tool was created in the CAD system environment and the position of the bodies relative to each other was determined with the highest possible accuracy. Results. Following the simulations, graphical dependencies of the change in thickness and area of the undeformed chip cross-sections on module, feed, tool position and tilt were produced. The nature of the influence of these parameters on the cup cutter blades was also determined. The scientific novelty and practical significance. The study makes it possible to analyse the dynamics of changes in the geometric dimensions of undeformed chips produced by each cutter blade and to identify the most stressed zones. Furthermore, knowing the complete chip information, it is possible to study the force characteristics of the cutting process on the blades, heat flows, calculate machining errors and predict tool wear. After a complete analysis of all the results of the Power Skiving process study, it is possible to recommend the optimum operating modes of the available equipment for a given gear, taking into account the number of teeth, their module and the workpiece material.
- Nagata E., Tachikawa T., Nakahara Y., Kurita N., Nakamura M., Iba D., Moriwaki I. Gear skiving for mass production. In The Proceedings of the JSME international conference on motion and power transmissions. – 2017. P. 02-13. The Japan Society of Mechanical Engineers. https://doi.org/10.1299/jsmeimpt.2017.02-13
- Pittler W. V. Verfahren zum Schneiden von Zahnrädern mittels eines zahnradartigen, an den Stirnflächen der Zähne mit Schneidkanten versehenen Schneidwerkzeugs. Deutsche Patentschrift, (243514). 1910.
- Bouzakis K. D., Lili E., Michailidis N., Friderikos O. Manufacturing of cylindrical gears by generating cutting processes: A critical synthesis of analysis methods. CIRP annals. – 2008. Vol.57 №2. Р. 676-696. https://doi.org/10.1016/j.cirp.2008.09.001
- Klocke F., Brecher C., Löpenhaus C., Ganser P., Staudt J., Krömer M. Technological and simulative analysis of power skiving. Procedia Cirp. 2016. Vol. 50, Р. 773-778. https://doi.org/10.1016/j.procir.2016.05.052
- Bergs T., Georgoussis A., Löpenhaus C. Development of a numerical simulation method for gear skiving. Procedia CIRP, -2020. Vol. 88, P. 352-357. https://doi.org/10.1016/j.procir.2020.05.061
- Spath D., Hühsam A. Skiving for high-performance machining of periodic structures. CIRP Annals, - 2002. Vol. 51(1), P.91-94. https://doi.org/10.1016/S0007-8506(07)61473-5
- Vargas B., Schulze V. Three-dimensional modeling of gear skiving kinematics for comprehensive process design in practical applications. CIRP Annals, 2021. Vol. 70(1), P.99-102. https://doi.org/10.1016/j.cirp.2021.04.075
- Janßen, C., Brimmers, J., & Bergs, T. Validation of the plane-based penetration calculation for gear skiving. Procedia CIRP, 2021. Vol. 99, P.220-225. https://doi.org/10.1016/j.procir.2021.03.034
- McCloskey P., Katz A., Berglind L., Erkorkmaz K., Ozturk E., Ismail F. Chip geometry and cutting forces in gear power skiving. CIRP Annals, 2019. Vol. 68(1), P.109-112. https://doi.org/10.1016/j.cirp.2019.04.085
- Antoniadis A. (2012). Gear skiving–CAD simulation approach. Computer-Aided Design, Vol. 44(7), P.611-616. https://doi.org/10.1016/j.cad.2012.02.003
- Inui M., Huang Y., Onozuka H., Umezu N. (2020). Geometric simulation of power skiving of internal gear using solid model with triple-dexel representation. Procedia Manufacturing, 48, 520-527. doi.org/10.1016/j.promfg.2020.05.078
- Antoniadis A., Vidakis N., Bilalis N. A simulation model of gear skiving. Journal of Materials Processing Technology, 2004. Vol.146(2), P.213-220. https://doi.org/10.1016/j.jmatprotec.2003.10.019
- Vargas, B., Zapf, M., Klose, J., Zanger, F., & Schulze, V. Numerical modelling of cutting forces in gear skiving. Procedia CIRP, 2019. Vol. 82, P.455-460. https://doi.org/10.1016/j.procir.2019.04.039
- Guo Z., Mao S. M., Huyan L., Duan D. S. Research and improvement of the cutting performance of skiving tool. Mechanism and Machine Theory, 2018. Vol. 120, P.302-313
- doi.org/10.1016/j.mechmachtheory.2017.08.004
- Li X. Q., Li J., Wang P., Zou Y. Calculation and Analysis of the Interference Amount in Gear Slicing. Applied Mechanics and Materials, -2014. Vol. 687, P.7-12.
- doi.org/10.4028/www.scientific.net/AMM.687-691.7
- Onozuka H., Tayama F., Huang Y., Inui M. Cutting force model for power skiving of internal gear. Journal of Manufacturing Processes, 2020. Vol. 56, P.1277-1285. https://doi.org/10.1016/j.jmapro.2020.04.022
- Tsai C. Y. Mathematical model for design and analysis of power skiving tool for involute gear cutting. Mechanism and Machine Theory. 2016. Vol. 101, P.195-208.doi.org/10.1016/j.mechmachtheory.2016.03.021
- Guo Z., Mao S. M., Li X. E., Ren Z. Y. (2016). Research on the theoretical tooth profile errors of gears machined by skiving. Mechanism and machine theory, 97, P.1-11. doi.org/10.1016/j.mechmachtheory.2015.11.001
- Guo, E., Hong, R., Huang, X., & Fang, C. Research on the cutting mechanism of cylindrical gear power skiving. The International Journal of Advanced Manufacturing Technology, - 2015. Vol. 79, P.541-550. https://doi.org/10.1007/s00170-015-6816-9
- Hrytsay, I., Stupnytskyy, V., Slipchuk A. Simulation of a Power Skiving Gear Cutting Process. Strojnícky časopis-Journal of Mechanical Engineering, 2023. Vol. 73(1), P.103-116. DOI:10.2478/scjme-2023-0008
- Hrytsay I.YE., Slipchuk A. M. [Power Skiving as a modern method of gear cutting and features of its modeling]. Avtomatyzatsiya vyrobnychykh protsesiv u mashynobuduvanni ta pryladobuduvanni. Ukrayinsʹkyy mizhvidomchyy naukovo-tekhnichnyy zbirnyk. [Automation of production processes in mechanical engineering and instrument engineering. Ukrainian interdepartmental scientific and technical collection.] Lʹviv 2022, №56, p. 11-18. [in Ukrainian]. doi.org /DOI 10.23939/istcipa2022.56.011