Investigation of Tool Temperature During the Cutting of Internal Gears Using the Power Skiving Method

2024;
: pp. 47 - 58
Authors:
1
Lviv Polytechnic National University

Problem statement and the research purpose. One of the main factors determining the intensity of tool wear is the temperature that arises during the cutting process. Thus, the objective is to investigate the patterns and obtain dependencies of heat generation and heat transfer between the elements of the cutting process that characterize the temperature of the tool’s teeth and blades. The aim is to establish heating and wear of the cutting edges during the machining of internal gears using the Power Skiving method. Methodology. Using a comprehensive interrelated graphical-analytical and mathematical modeling approach, including the creation of a 3D model of the undeformed chip built on the obtained sections, as well as simulations of contact, force, deformation, and thermal processes during the gear cutting of the internal ring, the friction forces and temperature on the teeth of the skiving cutters were investigated. Results. The proposed research methodology outlined in this work allows for selecting safe operating conditions for the cutting tool during the gear shaping process using the Power Skiving method. The obtained results ensure the necessary stability of skiving cutters and help avoid thermal overload. Scientific novelty and practical significance. The results of the study enable the selection of optimal cutting mode values when machining internal gears, considering the technical specifications of the equipment and the properties of the tool material. The selected safe cutting speed will maximize the productivity of this method and provide the necessary durability of skiving tools. Scopes of further investigations on the subject of the paper. In further studies, it is necessary to establish the relationship between the durability period of the skiving tool and temperature for various cutting depth values and during the engagement with the workpiece.

  1. https://www.youtube.com/watch?v=EefFxEGVbWo
  2. Pittler V. Verfahren zom Schneiden von Zahnrädern mittels eines zahnradartiges, an den Stirnflächen der Zähne mit Schneidekanten versehenen Schneidwerkzeugs. Deutsche Patentschrift. – N 243514, W. (1910).
  3. Bauer R., Dix M.. Novel method for manufacturing herringbone gears by power skiving. Procedia CIRP.– 2022. – Vol. 112. – P. 310–315. DOI:10.1016/j.procir.2022.09.003
  4. Sugimoto T., Ishibashi A., Yonekura M. Performance of skiving hobs in finishing induction hardened and carburized gears. Gear Technology. – 2003. – Vol. 20. – N 3. – Р. 34–41.
  5. Guo Z., Mao S., Huyan L., Duan D. Research and improvement of the cutting performance of skiving tool. Mech Mach Theory. – 2018. – Vol. 120. – P. 302–313. DOI:10.1016/j.mechmachtheory.2017.08.004
  6. Arndt T., Klose J., Gerstenmeyer M., Schulze V. Tool wear development in gear skiving process of quenched and tempered internal gears. Entwicklung des Werkzeugverschleißes beim Wälzschälen von vergüteten Innenverzahnungen. Forschung im Ingenieurwesen. – Vol. 86. – P. 587.  DOI:10.1007/s10010-021-00544-0
  7. Stadtfeld H. J. Power skiving of cylindrical gears on different machine platforms. Gear technology. –2014. – Vol. 31. – N 1. – P. 52–62. DOI:10.1016/S0007-8506(07)61473-5
  8. Kühlewein C. Untersuchung und Optimierung des Wälzschälverfahrens mit Hilfe von 3D-FEM- Simulation: 3D-FEM Kinematik-und Spanbildungssimulation. – 2013.
  9. Janßen C., Brimmers J., Bergs T. Validation of the plane-based penetration  calculation  for  gear skiving. Procedia CIRP. – 2021. – Vol. 99. – P. 220–225. DOI:10.1016/j.procir.2021.03.034
  10. Klocke F., Brecher C., Löpenhaus C., Ganser P., Staudt J., Krömer M. Technological and simulative analysis of power skiving. Procedia Cirp. – 2016. – Vol. 50. –  Р. 773–778. DOI:10.1016/j.procir.2016.05.052
  11. Bouzakis K. D., Lili E., Michailidis N., Friderikos O. Manufacturing of cylindrical gears by generating cutting processes: A critical synthesis of analysis methods. CIRP annals. – 2008. – Vol. 57. – N 2. – Р. 676–696. DOI:10.1016/j.cirp.2008.09.001
  12. Bergs T., Georgoussis A., Löpenhaus C. Development of a numerical simulation  method  for  gear skiving. Procedia CIRP. – 2020. – Vol. 88. – P. 352–357. DOI:10.1016/j.procir.2020.05.061
  13. Vargas B., Schulze V. Three-dimensional modeling of gear skiving kinematics for comprehensive process design in practical applications. CIRP Annals. – 2021. – Vol. 70. – N 1. – P. 99–102. DOI:10.1016/j.cirp.2021.04.075
  14. Spath D., Hühsam A. Skiving for high-performance machining of periodic structures. CIRP Annals. –2002. – Vol. 51. – N 1. – P. 91–94. DOI:10.1016/S0007-8506(07)61473-5
  15. Tsai C. Y. Mathematical model for design and analysis of  power  skiving  tool  for  involute  gear cutting. Mechanism and Machine Theory. – 2016. – Vol. 101. – P. 195–208. DOI:10.1016/j.mechmachtheory.2016.03.021
  16. Tapoglou N. Calculation of non-deformed chip and gear geometry in power skiving using a CAD-based simulation. The International Journal of Advanced Manufacturing Technology. – 2019. – Vol. 100. – N 5. – P. 1779– 1785. DOI:10.1007/s00170-018-2790-3
  17. Klocke F., Brecher C., Löpenhaus C., Ganser P., Staudt J., Krömer M. Technological and simulative analysis of power skiving. Procedia Cirp. – 2016. – Vol. 50. – P. 773–778.  DOI:10.1016/j.procir.2016.05.052
  18. Onozuka H., Tayama F., Huang Y.,  Inui  M.  Cutting  force  model  for  power  skiving  of  internal gear. Journal of Manufacturing Processes. – 2020. – Vol. 56. – P. 1277 –1285.  DOI:10.1016/j.jmapro.2020.04.022
  19. Inui M., Huang Y., Onozuka H., Umezu N. Geometric simulation of power skiving of internal gear using solid model with triple-dexel representation. Procedia Manufacturing. – 2020. – Vol. 48. – P. 520–527. DOI:10.1016/j.promfg.2020.05.078
  20. McCloskey P., Katz A., Berglind L., Erkorkmaz K., Ozturk E., Ismail F. Chip geometry and cutting forces in gear power skiving. CIRP Annals.  –  2019. – Vol. 68. – N 1. –  P. 109–112. DOI:10.1016/j.cirp.2019.04.085
  21. Bergs T., Georgoussis A., & Löpenhaus C. Development of a numerical simulation method for gear skiving. Procedia CIRP. – 2020. – Vol. 88. – P. 352–357. DOI:10.1016/j.procir.2020.05.061
  22. Fang Z., Ren Z., Kizaki T., Feng Y., Kugo J., Komatsu Y., Sugita N. Construction of uncut chip geometry in gear skiving using level contours. Precision Engineering. – 2022. – Vol. 73. – P. 93–103. DOI:10.1016/j.precisioneng.2021.08.013
  23. Yoshikoto Yanase/ The Latest Gear Manufacturing Technology for High Accuracy and Efficiency.т Mitsubishi Heavy Industries Technical Review. – 2018.  – Vol. 55. – N 3.
  24. Wu X., Li J., Jin Y., Zheng S. Temperature calculation of the tool and chip in slicing process with equal- rake angle arc-tooth slice tool. Mechanical Systems and Signal Processing. – 2020. – Vol. 143, 106793. DOI:10.1016/j.ymssp.2020.106793
  25. Storchak M., Kushner V., Möhring HC. et al. Refinement of temperature determination in cutting zones. J Mech Sci Technol. – 2021. – Vol. 35. –  P. 3659–3673. DOI:10.1007/s12206-021-0736-4
  26. Storchak M., Mohring H.-C., Steh T. Improving the friction model for the simulation of cutting processes.Tribology International. – 2022. – Vol. 167, 107376. DOI:10.1016/j.triboint.2021.107376
  27. Slipchuk A. Novitskyi M. Definition Of The Geometric Parameters Of The Undeformed Chip At The Cut-In Stage When Machining An External Gear Using The Power Skiving Method. Ukrainian Journal Of Mechanical Engineering And Materials Science UJMEMS. – 2023. – Vol. 9. – N 4. – P. 49–56. DOI:10.23939/ujmems2023.04.049
  28. Hrytsay I., Slipchuk A. Features of using the power skiving method for multi-pass cutting of internal gears. Archive of Mechanical Engineering. – 2024. – Vol. 71. – N 2. – P. 189–211. DOI: 10.24425/ame.2024.149636
  29. Hrytsay I., Slipchuk A., Bosansky M. Justification of the choice of parameters for the gear power skiving operation based on computer  simulation.  Journal  of  Mechanical  Engineering  –  Strojnicky  Casopis. –  2023. – Vol. 73. – N 2. –  P. 33–44. DOI:10.2478/scjme-2023-0020.