Problem statement and the research purpose. One of the main factors determining the intensity of tool wear is the temperature that arises during the cutting process. Thus, the objective is to investigate the patterns and obtain dependencies of heat generation and heat transfer between the elements of the cutting process that characterize the temperature of the tool’s teeth and blades. The aim is to establish heating and wear of the cutting edges during the machining of internal gears using the Power Skiving method. Methodology. Using a comprehensive interrelated graphical-analytical and mathematical modeling approach, including the creation of a 3D model of the undeformed chip built on the obtained sections, as well as simulations of contact, force, deformation, and thermal processes during the gear cutting of the internal ring, the friction forces and temperature on the teeth of the skiving cutters were investigated. Results. The proposed research methodology outlined in this work allows for selecting safe operating conditions for the cutting tool during the gear shaping process using the Power Skiving method. The obtained results ensure the necessary stability of skiving cutters and help avoid thermal overload. Scientific novelty and practical significance. The results of the study enable the selection of optimal cutting mode values when machining internal gears, considering the technical specifications of the equipment and the properties of the tool material. The selected safe cutting speed will maximize the productivity of this method and provide the necessary durability of skiving tools. Scopes of further investigations on the subject of the paper. In further studies, it is necessary to establish the relationship between the durability period of the skiving tool and temperature for various cutting depth values and during the engagement with the workpiece.
- https://www.youtube.com/watch?v=EefFxEGVbWo
- Pittler V. Verfahren zom Schneiden von Zahnrädern mittels eines zahnradartiges, an den Stirnflächen der Zähne mit Schneidekanten versehenen Schneidwerkzeugs. Deutsche Patentschrift. – N 243514, W. (1910).
- Bauer R., Dix M.. Novel method for manufacturing herringbone gears by power skiving. Procedia CIRP.– 2022. – Vol. 112. – P. 310–315. DOI:10.1016/j.procir.2022.09.003
- Sugimoto T., Ishibashi A., Yonekura M. Performance of skiving hobs in finishing induction hardened and carburized gears. Gear Technology. – 2003. – Vol. 20. – N 3. – Р. 34–41.
- Guo Z., Mao S., Huyan L., Duan D. Research and improvement of the cutting performance of skiving tool. Mech Mach Theory. – 2018. – Vol. 120. – P. 302–313. DOI:10.1016/j.mechmachtheory.2017.08.004
- Arndt T., Klose J., Gerstenmeyer M., Schulze V. Tool wear development in gear skiving process of quenched and tempered internal gears. Entwicklung des Werkzeugverschleißes beim Wälzschälen von vergüteten Innenverzahnungen. Forschung im Ingenieurwesen. – Vol. 86. – P. 587. DOI:10.1007/s10010-021-00544-0
- Stadtfeld H. J. Power skiving of cylindrical gears on different machine platforms. Gear technology. –2014. – Vol. 31. – N 1. – P. 52–62. DOI:10.1016/S0007-8506(07)61473-5
- Kühlewein C. Untersuchung und Optimierung des Wälzschälverfahrens mit Hilfe von 3D-FEM- Simulation: 3D-FEM Kinematik-und Spanbildungssimulation. – 2013.
- Janßen C., Brimmers J., Bergs T. Validation of the plane-based penetration calculation for gear skiving. Procedia CIRP. – 2021. – Vol. 99. – P. 220–225. DOI:10.1016/j.procir.2021.03.034
- Klocke F., Brecher C., Löpenhaus C., Ganser P., Staudt J., Krömer M. Technological and simulative analysis of power skiving. Procedia Cirp. – 2016. – Vol. 50. – Р. 773–778. DOI:10.1016/j.procir.2016.05.052
- Bouzakis K. D., Lili E., Michailidis N., Friderikos O. Manufacturing of cylindrical gears by generating cutting processes: A critical synthesis of analysis methods. CIRP annals. – 2008. – Vol. 57. – N 2. – Р. 676–696. DOI:10.1016/j.cirp.2008.09.001
- Bergs T., Georgoussis A., Löpenhaus C. Development of a numerical simulation method for gear skiving. Procedia CIRP. – 2020. – Vol. 88. – P. 352–357. DOI:10.1016/j.procir.2020.05.061
- Vargas B., Schulze V. Three-dimensional modeling of gear skiving kinematics for comprehensive process design in practical applications. CIRP Annals. – 2021. – Vol. 70. – N 1. – P. 99–102. DOI:10.1016/j.cirp.2021.04.075
- Spath D., Hühsam A. Skiving for high-performance machining of periodic structures. CIRP Annals. –2002. – Vol. 51. – N 1. – P. 91–94. DOI:10.1016/S0007-8506(07)61473-5
- Tsai C. Y. Mathematical model for design and analysis of power skiving tool for involute gear cutting. Mechanism and Machine Theory. – 2016. – Vol. 101. – P. 195–208. DOI:10.1016/j.mechmachtheory.2016.03.021
- Tapoglou N. Calculation of non-deformed chip and gear geometry in power skiving using a CAD-based simulation. The International Journal of Advanced Manufacturing Technology. – 2019. – Vol. 100. – N 5. – P. 1779– 1785. DOI:10.1007/s00170-018-2790-3
- Klocke F., Brecher C., Löpenhaus C., Ganser P., Staudt J., Krömer M. Technological and simulative analysis of power skiving. Procedia Cirp. – 2016. – Vol. 50. – P. 773–778. DOI:10.1016/j.procir.2016.05.052
- Onozuka H., Tayama F., Huang Y., Inui M. Cutting force model for power skiving of internal gear. Journal of Manufacturing Processes. – 2020. – Vol. 56. – P. 1277 –1285. DOI:10.1016/j.jmapro.2020.04.022
- Inui M., Huang Y., Onozuka H., Umezu N. Geometric simulation of power skiving of internal gear using solid model with triple-dexel representation. Procedia Manufacturing. – 2020. – Vol. 48. – P. 520–527. DOI:10.1016/j.promfg.2020.05.078
- McCloskey P., Katz A., Berglind L., Erkorkmaz K., Ozturk E., Ismail F. Chip geometry and cutting forces in gear power skiving. CIRP Annals. – 2019. – Vol. 68. – N 1. – P. 109–112. DOI:10.1016/j.cirp.2019.04.085
- Bergs T., Georgoussis A., & Löpenhaus C. Development of a numerical simulation method for gear skiving. Procedia CIRP. – 2020. – Vol. 88. – P. 352–357. DOI:10.1016/j.procir.2020.05.061
- Fang Z., Ren Z., Kizaki T., Feng Y., Kugo J., Komatsu Y., Sugita N. Construction of uncut chip geometry in gear skiving using level contours. Precision Engineering. – 2022. – Vol. 73. – P. 93–103. DOI:10.1016/j.precisioneng.2021.08.013
- Yoshikoto Yanase/ The Latest Gear Manufacturing Technology for High Accuracy and Efficiency.т Mitsubishi Heavy Industries Technical Review. – 2018. – Vol. 55. – N 3.
- Wu X., Li J., Jin Y., Zheng S. Temperature calculation of the tool and chip in slicing process with equal- rake angle arc-tooth slice tool. Mechanical Systems and Signal Processing. – 2020. – Vol. 143, 106793. DOI:10.1016/j.ymssp.2020.106793
- Storchak M., Kushner V., Möhring HC. et al. Refinement of temperature determination in cutting zones. J Mech Sci Technol. – 2021. – Vol. 35. – P. 3659–3673. DOI:10.1007/s12206-021-0736-4
- Storchak M., Mohring H.-C., Steh T. Improving the friction model for the simulation of cutting processes.Tribology International. – 2022. – Vol. 167, 107376. DOI:10.1016/j.triboint.2021.107376
- Slipchuk A. Novitskyi M. Definition Of The Geometric Parameters Of The Undeformed Chip At The Cut-In Stage When Machining An External Gear Using The Power Skiving Method. Ukrainian Journal Of Mechanical Engineering And Materials Science UJMEMS. – 2023. – Vol. 9. – N 4. – P. 49–56. DOI:10.23939/ujmems2023.04.049
- Hrytsay I., Slipchuk A. Features of using the power skiving method for multi-pass cutting of internal gears. Archive of Mechanical Engineering. – 2024. – Vol. 71. – N 2. – P. 189–211. DOI: 10.24425/ame.2024.149636
- Hrytsay I., Slipchuk A., Bosansky M. Justification of the choice of parameters for the gear power skiving operation based on computer simulation. Journal of Mechanical Engineering – Strojnicky Casopis. – 2023. – Vol. 73. – N 2. – P. 33–44. DOI:10.2478/scjme-2023-0020.