У сучасній вимірювальній техніці кіберфізичні системи як розпорошені інтелектуальні системи на основі мереж фізичних та обчислювальних компонентів, які взаємодіють, забезпечують нові функціональні можливості щодо покращення якості процесів вимірювань. Для забезпечення ефективності вимірювань у розпорошених інформаційно-вимірювальних пристроях запропоновано використовувати переносні кодокеровані міри-імітатори. Застосування таких переносних кодокерованих мір дає змогу практично впроваджувати системи керування вимірюваннями, які забезпечують придатність методів вимірювання та вимірювального обладнання до використання за призначенням та заданий рівень ризиків отримання невірогідних результатів вимірювання. Показано також, що оперативне контролювання параметрів вимірювальних каналів дає змогу забезпечити метрологічну надійність розпорошених кіберфізичних систем, оскільки традиційні підходи в цьому випадку фактично не можна використовувати. Показано, що побудова калібраторів пасивних величин пов’язана із істотним впливом параметрів комутаційних елементів. Зазначено, що використання принципу імітації дає можливість водночас підвищити дискретність, точність і надійність та розширити функціональні можливості багатозначних мір електричного опору та імпедансу. Запропоновано реалізовувати чотиризатискачеві міри електричного опору в низькоомному (сильнострумовому та низьковольтному) діапазоні відтворення з корекцією похибок його вимірювання методом зміни напряму струму. В середньоомному піддіапазоні розглянуто способи побудови чотирипровідних імітаторів опору із інваріантністю до впливу адитивних зміщень схеми та уніфікацією із калібраторами напруги постійного струму. У високоомній області запропоновано трипровідні кодокеровані міри провідності із використанням високовольтного подільника напруги, що робить їх придатними для мікроелектронного виконання. Запропоновано та проаналізовано кодокеровані міри адмітансу для оперативного контролювання вимірювачів імпедансу. Аналіз похибок показав, що метрологічні властивості мір-імітаторів імітансу практично визначатимуться лише параметрами зразкових мір опору, ємності та індуктивності. Розроблені та проаналізовані структури кодокерованих мір електричного опору та комплексної провідності можуть бути реалізовані в мікроелектронному виконанні в базисі програмованих систем на чипі. Наголошено на можливості практичної реалізації універсального переносного калібратора напруги, електричного опору постійному струму та імпедансу з автоматичною корекцією похибок.
[1] D. Placko. Metrology in Industry. The Key for Quality. John Wiley & Sons Inc., 2013.
[2] П. Орнатский, Теоретические основы информационно-измерительной техники, Киев, Украина: Вища школа. 1983.
[3] ISO 10012:2003 Measurement management systems - Requirements for measurement processes and measuring equipment.
[4] Data-Acquisition-Handbook. A Reference For DAQ and Analog & Digital Signal Conditioning, 2012 [Online]. Available: http://www.mccdaq.com/pdfs/anpdf/Data-Acquisition-Handbook.pdf
[5] Cyber-Physical Systems. Metrological Issues. Ed. S. Yatsyshyn, B. Stadnyk. IFSA Publ., 2016.
[6] Yu. Yatsuk, M. Mykyjchuk, V. Zdeb, R. Yanovych, “Metrological Array of Cyber-Physical Systems. Part 11. Remote Error Correction of Measuring Channel”, Sensors & Transducers, vol. 192, iss. 9, p. 22–29, 2015.
[7] A. Bakker, K. Thiele, J.H Huijsing. “A CMOS nested-chopper instrumentation amplifier with 100 nV offset”, IEEE Journal of Solid-State Circuits, vol. 35, p. 1877–1883, 2000.
[8] В. Яцук, П. Малачівський, Методи підвищення точності вимірювань, Львів, Україна: Бескид-Біт, 2008.
[9] Р . Огірко, “Бездемонтажний контроль метрологічних характеристик промислових засобів вимірювання”, Вимірювальна техніка та метрологія, вип. 60, с. 73–86, 2002.
[10] R. Yanovych, Yu. Yatsuk, V. Zdeb, V. Yatsuk, “Possibilities of Precision Ohmmeter Calibration in the Exploitation Condition”, in Proc. of the 7th Intern. Conf. on Intelligent Data Acquisition and Advanced Comp. Systems, Berlin, Germany, vol. 1, p. 86–89. 2013.
[11] С. Поліщук, М. Дорожовець, В. Яцук та ін. Метрологія та вимірювальна техніка, Львів, Україна: Вид-во Львівської політехніки, 2012.
[12] Linear Circuit Design Handbook, Analog Devices Inc., Engineering News, 2011.
[13] James H. Bentley, Karen M. Hess, A Programmed Review for Electrical Engineering, Springer Science & Business Media, 2012.
[14] 9820 Programmable Low Ohm Resistance, Time Electronics Calibration, Test & Measurement. [Online]. Available: http://www.hispacontrol.com/recursos/pdf/time_ 9819_9820.pdf
[15] В. Яцук, “Принципи побудови кодокерованих мір опору”, Вимірювальна техніка та метрологія, вип. 55, с. 35–43, 1999.
[16] M. Mykyjchuk, O. Ivakhiv, V. Yatsuk, “Measurement. Resistance Calibrators for Verification of Instruments Destined for Industrial Applications”. Measurement. Automation. Monitoring, vol. 1, no. 08, p. 90–394, 2015.
[17] В. Яцук. Розвиток теорії та методів підвищення якості засобів вимірювальної техніки з використанням кодокерованих мір, автореф. дис. д-ра техн. наук, Львів, Україна: Нац. ун-т «Львівська політехніка», 2004.
[18] CY8CKIT-059 PSoC® 5LP Prototyping Kit with Onboard Programmer and Debugger, Apr. 02, 2018. [Online]. Available: http://www.cypress.com/documentation/development-kitsboards/cy8ckit-059-....
[19] AD8551/AD8552/AD8554, Zero-Drift, Single-Supply, Rail-to-Rail, Input/Output Operational Amplifiers, Data Sheets, 2015, Analog Devices, Inc. [Online]. Available: http://www.analog.com
[20] В. Яцук, Р. Матвіїв, Ю. Яцук, “Переносні імітатори опору з чотирипровідним підключенням”, у Мат. 25-ї Міжнар. конф. з автоматичного управління “Автоматика–2018”, 18–19 вересня 2018р., Львів, Україна: вид-во Львівської політехніки, 2018, с. 115–116.
[21] B. Schweber, How to Select the Right Galvanic Isolation Technology for IoT Sensors, Contributed By Digi-Key's North American Editors, Jul. 12, 2017. [Online]. Available: https://www.digikey.com/en/articles/techzone/2017/dec/how-select-galvani...
[22] М. Микийчук, Я. Пацарнюк, В. Яцук, Імітатор великих значень опорів. Пат. України 94250597, МКИ G01R27/00. Опубл. 28.12.94, Бюл. № 7–, 1994.
[23] V. Yatsuk, T. Bubela, Ye. Pokhodylo, Yu. Yatsuk, R. Kochan, “Improvement of data acquisition system of objects physic-chemical properties”, in Proc. 9th IEEE Intern. Conf. on Intel. Data Acq. and Adv. Comp. Systems: Technology and Applications. Bucharest, Romania, 2017, p. 41–46.
[24] T. Bubela, V. Yatsuk, Y. Pokhodylo, M. Mykyychuk, V. Dmytriv, “Admittance Research and Simulation of Nonelectrical Nature Object Properties, in Proc. 14th Int. Conf. on Adv. Trends in Radioelectronics, Telecom. and Comp. Eng., TCSET-2018, 2018, p. 238–242.
[25] В.О. Яцук, Р.О. Матвіїв, Ю.В. Яцук, “Аналіз метрологічних властивостей переносних калібраторів з коригуванням похибок”, Метрологія та прилади, вип. 4 (72), с. 33–40, 2018.
[26] R. Palmer. DC Parameters: Input Offset Voltage, Application Report SLOA059 – March 2001. Texas Instr. Inc. [Online]. Available: http://www.ti.com/lit/an/sloa059/sloa059.pdf