ANALYSIS OF VERIFICATION AND CALIBRATION METHODOLOGIES OF MEASURING INSTRUMENTS

2019;
: pp. 51-66
Authors:
1
Lviv Polytechnic National University

The article focuses on the main problems of metrological confirmation of measuring instruments in accordance with international requirements and considers possible directions of their solution. One of the main tasks of metrology is assurance of the uniformity of measurements, that is, the state of measurements, in which their results are expressed in the legal units, and the characteristics of errors or uncertainty of measurements are known with a certain probability and do not exceed  the established limits. The uniformity of measurements is ensured by the conformity of methods of measurements and measuring instruments to use for their intended purpose. In turn, the suitability of the measuring instruments to use for their intended purpose is determined by the conformity of their metrological characteristics with the established norms. Conformity assessment is the process of proving that the established requirements for a product, process, service, system, entity or body have been met. 

Metrological confirmation is a set of operations required to ensure that measuring equipment conforms to the requirements for  its  intended  use. Metrological  confirmation  of measuring  instruments  generally  includes  their  verification  and  calibration. Verification and calibration procedures of measuring instruments have both common features and certain differences.

The procedure of the experimental part of the metrological confirmation of measuring instruments, both their verification and  calibration,  consists  in  comparing  the  indication, of  the  measuring  instrument,  which  is  being  verified,  whether indication of  the  measuring  instrument,  which  is  being  calibrated,  with  the  standard  quantity  value. Consequently, in both procedures there is a common research object: in the verification procedure it is the indication  of the measuring  instrument,  which  needs  to  be  verified;  in  the  calibration  procedure  it  is  the  indication of  the  measuring instrument, which needs to be calibrated. Accordingly, the methods for implementing the verification and calibration procedures are practically identical. 

One of the key issues in the measuring instruments verification and calibration procedures is the question of estimating the accuracy and reliability of the obtained results. The error of the measuring instrument indication, which is being verified, is the measurand in the verification procedure, and it is determined as the result of indirect measurements. The combined standard  uncertainty  of  the  found  error  value  is  the  accuracy  estimate  of  the  verification  result. The actual  quantity  value,  that  corresponds  to  the measuring  instrument  indication, which  is  being  calibrated,  is  the measurand in the calibration procedure. The expanded uncertainty  of the found actual value,  with confidence level is the accuracy estimate of the calibration result. The obtained values  with confidence level are indicated in the calibration certificate of the measuring instrument.

[1] The Law of Ukraine on Metrology and Metrological Activity,  no.  1314-VII  dated  of  05.06.2014,  Kyiv,  Ukraine: Parliament publishing house, 2014 (in Ukrainian). 

[2] OIML D 1:2012  (E), Considerations  for  a Law on Metrology: International document, 2012. 

[3] OIML V 2:2012  (E/F),  International vocabulary  of metrology:  Basic  and  general  concepts  and  associated  terms, VIM3, 2012. 

[4]  Sustainable  Development  Knowledge  Platform. Transforming  our  world:  the  2030  Agenda  for  Sustainable Development,  2015  [Online].  Available:  https://sustainab ledevelopment.un.org/post2015/transformingourworld/

[5] The Law of Ukraine on Technical Regulations and Conformity  Assessment,  No.  124-VIIIІ  dated  of  15.01.2015, Kyiv,  Ukraine:  Parliament  publishing  house,  2015  (in Ukrainian). 

[6]  ISO  10012:2003, Measurement Management  Systems: Requirements for Measurement Processes and Measuring Equipment, 2003. 

[7] OIML D  3:1979, Legal  qualification  of measuring instruments: International document, 1979. 

[8] The procedure for verifying of the legally regulated measuring  instruments  which  are  in  operation,  and  the registration  of  its  results: Order  of  the Ministry  of Economic Development  and  Trade  of  Ukraine  no.  193  dated  of 08.02.2016, Kyiv, Ukraine, 2016 (in Ukrainian).

[9]  Technical  regulation  of  the  legally  regulated measuring  instruments:  Approved  by  the  decision  of  the Ukraine Cabinet Ministers, No. 94 dated of 13.01.2016, Kyiv, Ukraine, 2016 (in Ukrainian). 

[10]  ISO/IEC  17025:2017,  General  Requirements  for the Competence of Testing and Calibration Laboratories, 2017. 

[11]  V.  Motalo,  “Analysis  of  verification  and calibration  methodologies  of  measuring  instruments”,  in  All-Ukrainian  scientific  and  technical  conference  in  the  field  of metrology “Technical Using of Measurement, 2019”, Slavske, Ukraine, 2019, p. 18–20 (in Ukrainian)  

[12]  ISO/IEC  Guide  98-3:2008,  Uncertainty  of measurement, Part 3: Guide to the expression of uncertainty in measurement, 2008. 

[13] EA-4/02 M:  2013, Expression  of  the Uncertainty of Measurement in Calibration: European Accreditation, 2013. 

[14] M. Dorozhovets,  Processing  of  the measurement results, Lviv, Ukraine: Lviv Polytechnic Publ. House, 2007 (in Ukrainian).

[15] O. Maletskaya,  and M. Moskalenko,  “Calibration of  the  Measuring  Instruments:  Estimation  of  the  Error  and Uncertainty  of  Measurements”,  Information  Processing Systems, , iss. 3 (110), p. 75–79, 2013 (in Russian).

[16]  R.  Trysch,  M. Moskalenko,  and  O. Maletskaya, “Calibration  Techniques:  Developments  and  Problems”, Information Processing Systems, iss. 1 (99), p. 45–48, 2012 (in Russian).

[17]  DSTU  GOST  8.237:2008  (GOST  8.237:2003, IDT), Single-value electrical resistance measures: Verification procedure, Kyiv, Ukraine, 2009 (in Ukrainian).

[18] OIML R 111-1, Weights of classes E1, E2, F1, F2, M1,  M1-2,  M2,  M2-3  and  M3  Part  1:  Metrological  and technical requirements, 2004. 

[19]  I.  Zakharov,  S.  Vodotyka,  and  E.  Shevchenko, “Methods, models, and budgets for estimation of measurement uncertainty during calibration”, Measurement Techniques, No. 4, p. 20–26, 2011 (in Russian).

[20]  M.  Dorozhovets,  V.  Motalo,  B,  Stadnyk,  and others, Fundamentals of Metrology and Measuring Technique in  two  volumes,  vol.  2:  Measuring  Technique;  ed.  by  B. Stadnyk, Lviv, Ukraine: Lviv Polytechn. Publ. House, 2005 (in Ukrainian).

[21]  V. Motalo,  “Verification  of  the  resistive  voltage dividers  by  resistance  ratio  measurement  method”,  Scientific Bulletin  of  UNFU,  vol.  26,  No.  1,  p.  244–252,  2016  (in Ukrainian).

[22] OIML V 1:2013 (E/F), International Vocabulary of Terms in Legal Metrology (VIML), 2013.

[23]  DSYU  GOST  8.366:2009.  Digital  ohmmeters: Methods  and means  for  verification, Kyiv, Ukraine,  2008  (in Ukrainian).

[24] Guidelines on the Calibration of Digital Multimeters: Calibration Guide EURAMET cg-15, version 3.0, 2015. 

[25] OIML R 34:1979, Accuracy classes of measuring instruments: International recommendation, 1979.  

[26] COOMET R/GM/21:2011, Use of concepts “error of measurement”  and  “uncertainty  of measurement”: General principles, 2011 (in Russian).

[27]  OIML  D  8  Edition  2004  (E),  Measurement standards:  Choice,  recognition,  use,  conservation  and documentation, International document, 2004. 

[28]  Guidelines  on  the  Calibration  of  Non-Automatic Weighing Instruments: EURAMET Calibration Guide, No. 18, version 4.0, 2015.