: pp. 18-24
State Enterprise “Ukrmetrteststandard”, Ukraine
State Enterprise “Ukrmetrteststandard”, Ukraine

The phase is one of the main parameters of the oscillatory process in electric circuits and contains two components
– constant and variable. More often, it is not the actual phase that is measured, but the phase shift angle (PSA) between two
oscillating processes (voltages or currents) of the same frequency in the range from 0 to 360˚. Then the PSA is equal to the difference
between the constant components of the phases of the two oscillations and does not depend on the start of the time count.
Most of the modern methods of measuring the phase and PSA are based on the methods of discretization and digital signal processing
– complex Fourier transform, least squares, etc. There are many varieties and improvements of these methods, which have
different characteristics of measurement accuracy. The LabVIEW graphical programming environment has already become a general-
purpose programming environment. Advantages of LabVIEW include simple networking, implementation of common communication
protocols, powerful toolkits for process control and data fitting, fast and simple user interface design, and an efficient
code execution environment. The article presents the results of the automation of measurements on the State Standard of the PSA
between two voltages in the frequency range from 5 Hz to 10 MHz. Automation of precision measurements of PSA using the Lab-
VIEW software environment provides advantages in comparison with manual measurements, in particular, reducing the time of
measurement and processing of its results by at least three times. This ensures an increase in the productivity of metrological
works; increasing their efficiency and quality, and the possibility of increasing the number of measurements (up to 1000), which
allows for improve the root mean square deviation of not less than one and a half times, and reduce the overall standard measurement
uncertainty, respectively.

[1] V. Isaiev, “Method of measuring the angle of phase shift between two voltages using a precision meter of the voltage”, Ukrainian Metrological Journal, 2017, No. 2, pp. 3–
7. DOI: 10.24027/2306-7039.2.2017.109620.

[2] O. M. Velychko, V. V. Isaiev, “Some features of the calibration method of multifunctional calibrators”, Collection of scientific works of the Odesa State Academy of
Technical Regulation and Quality, 2017, No. 2 (11), pp.39–45. DOI: 10.32684/2412-5288-2017-2-11-39-45.
[3] B. Hee-Jung, and S. Sugoog, “Phase Shift Analysis and Phase Identification for Distribution System with 3-Phase Unbalanced Constant Current Loads”, Journal of Electrical
Engineering and Technology, Vol. 8, 2013, Issue 4, pp. 729-736. DOI: 10.5370/JEET.2013.8.4.729.
[4] K. K. Clarke and D. T. Hess, “Phase measurement, traceability, and verification theory and practice”, 6th IEEE Conference Record., Instrumentation and Measurement
Technology Conference, 1989, pp. 214-218. doi:10.1109/IMTC.1989.36856.
[5] E. Mohns and M. Kahmann, “Heterodyne Measurement System (HMS) for Determining Phase Angles”, IEEE Transactions on Instrumentation and Measurement, vol.
56, no. 2, pp. 505-508, April 2007. DOI: 10.1109/TIM. 2007.890624.
[6] J. Manceau., I. Blanc, A. Bounouh., and R. Delaunay, “Application des méthodes d'échantillonnage aux mesures des déphasages pour des fréquences de 20 Hz à 20 kHz”, 2008. default/files/media/document/p3-12-frm13-manceauechantillonnage-dephasage.pdf

[7] F. L. Bertottia, M. S. Harab, and P. J. Abattic, “A simple method to measure the phase difference between sinusoidal signals, Review of Scientific Instruments, vol. 81,
2010, issue 11, 115106, 2010. DOI: 10.1063/1.3498897.
[8] M. Šíra and S. Mašláň, “Uncertainty analysis of noncoherent sampling phase meter with four-parameter sine wave fitting by means of Monte Carlo”, 29th Conference
on Precision Electromagnetic Measurements (CPEM 2014), 2014, pp. 334-335, DOI: 10.1109/CPEM. 2014.6898395.
[9] Y.-Z. Liu, and B. Zhao, “Phase-shift correlation method for accurate phase difference estimation in range finder”, Applied Optics, vol. 54, 2015, issue 11, pp. 3470-3477.
doi: 10.1364/AO.54.003470.
[10] Y. Tu, Y. Shen, and P. Chen, “Correlation theory-based phase difference estimation method for sinusoidal signals,” 35th Chinese Control Conference (CCC), 2016, pp.
5112-5115. doi: 10.1109/ChiCC.2016.7554148.
[11] T. Wang, Y. Hou, S. Tang, H. Lei, and Z. Deng, “Measuring phase difference of sinusoidal signals based on FPGA”, 13th IEEE International Conference on Control
& Automation (ICCA), 2017, pp. 1039-1042. DOI:10.1109/ICCA.2017.8003204.
[12] I. Choque, M. Servin, M. Padilla, M. Asmad, and S. Ordones, “Phase measurement of nonuniform phase-shifted interferograms using the frequency transfer function”,
Appl. Opt., Vol. 58, 2019, Issue 15, pp. 4157-4162. DOI 10.1364/AO.58.004157.
[13] Y. Antonenko, V. Kozheshkurt, D. Shtoda, V. Katrich, “An amplitude and phase detector for dielectric spectroscopy systems”, Radiofizika i elektronika, Vol. 25, 2020,
Issue 3, pp. 68-77. DOI: 10.15407/rej2020.03.068 (in Ukrainian).
[14] Velychko, Oleh, Valentyn Isaiev and Yu.R. Kulish. “Comparison of Phase Angle Measurement Results by Means of Two Methods.” 2018 Conference on Precision
Electromagnetic Measurements (CPEM 2018) (2018): 1-2. DOI: 10.1109/CPEM.2018.8500900.
[15] Y. G.,Hang Xu, and A. Chi, “Broadband Dynamic Phasor Measurement Method for Harmonic Detection”, Electronics, vol. 11, 2022, No. 11, pp. 1667. DOI:
[16] Yu. Kulish, “Improvement of the metrological characteristics of State primary standard phase angle between two voltages unit by measurements automation”, Proc. of VII International Competition of COOMET “Best Young Metrologist”, 17–18 May 2017, Astana, Kazakhstan, pp.13–16. DOI: 10.24027/2306-7039.1A.2017.99394.
[17] O. M. Velychko, S. M. Shevkun, M. V. Dobroliubova, and Yu. M.Izbash, “The uncertainty estimates in the calibration of phase meters with using the State Standards of
phase angle between two voltages”, Information Processing Systems, Vol. 2(127), 2015, pp. 86-88. (in Ukrainian).
[18] O. M. Velychko, S. M. Shevkun, Yu. M. Kulish, M. V.Dobroliubova, “Assessment of uncertainty in the calibration phase angle generators on the state primary standard
phase angle between two voltages at the fundamental frequency range”, Information systems, mechanics and control, 2017, No. 17, pp. 32–39. DOI: 10.20535/2219-
3804172017100051 (in Ukrainian).
[19] V. D. Ulieru, “Electric measurements with LabVIEW”, In Proceedings of the 8th WSEAS Int. Conf. on Math.methods and comp. techniques in el. eng.(MMACTEE’06). World Sc. and Eng. Academy and Society (WSEAS), Stevens Point, Wisconsin, USA, 2006, pp. 197–200. DOI: 10.5555/1983991.1984034.
[20] C. Elliott, V. Vijayakumar, W. Zink, R. Hansen, “Nat.Instr. LabVIEW: A Programming Environment for Lab. Aut. and Meas.”, JALA: Journal of the Association for
Laboratory Automation, 2007, vol. 12(1), pp. 17-24. DOI::10.1016/j.jala.2006.07.012.
[21] P. Otomański, Z. Krawiecki, and A Odon, “The application of the LabVIEW environment to evaluate the accuracy of alternating voltage measurements”, Journal of
Physics: Conference Series, Vol. 238, 13th IMEKO TC1-TC7 Joint Symposium 1–3 September 2010, City University London, UK. DOI:.10.1088/1742-6596/238/1/012005.
[22] A. Korgin, V. Ermakov, L. Zeyd Kilani, “Automation and Processing Test Data with LabVIEW Software”, IOP Conf. Series: Mat. Sc. and Eng., Vol.661, XXVIII R-P-S
Seminar 2019 9–13 Sept. 2019, Žilina, Slovakia. DOI:10.1088/1757-899X/661/1/012073.
[23] J. Kodosky. 2020. LabVIEW. Proc. ACM Program.Lang. 4, HOPL, Article 78 (June 2020), 54
[24] The BIPM key comparison database (KCDB). Available at: