Synthesis of Methanol from Methane in Cavitation Field

2018;
: pp. 69-73
1
Volodymyr Dahl East Ukrainian National University
2
Volodymyr Dahl East Ukrainian National University
3
Volodymyr Dahl East Ukrainian National University
4
JSC «ORGCHIM»

Methanol synthesis was achieved by a free-radical mechanism of the compounding reaction of methane and hydroxyl radical. Experiments were performed by feeding methane and hydrogen-peroxide into a cavitation field. The major reaction products were methanol and water molecules. The calculated degree of methane conversion equals to ~10 %.

[1] Imperial Chemical Industries (ICI). Methanol Synthesis Technology, London 1966.

[2] Dlugokencky E., Masarie K., Lang P. et al.: Nature, 1998, 393, 447. https://doi.org/10.1038/30934
https://doi.org/10.1038/30934

[3] Crabtree R.: Chem. Rev., 1995, 95, 987. https://doi.org/10.1021/cr00036a005
https://doi.org/10.1021/cr00036a005

[4] Rozovskyy A., Lin G.: Teoreticheskie Osnovy Processa Sinteza Metanola. Khimiya, Moskva 1990.

[5] Shilov A., Shul'pin G.: Activation and Catalytic Reactions of Saturated Hydrocarbons in the Presence of Metal Complexes [in:] Parkins A. (Ed.), Applied Organometallic Chemistry. Kluwer Academic Publishers, Dordrecht 2000.

[6] Rudakov E.: Elektroliz v Neorganicheskoi Khimii. Naukova Dumka, Kiev 1985.

[7] Arutyunov V., Krylov E.: Uspekhi Khimii, 2005, 74, 1216. https://doi.org/10.1070/RC2005v074n12ABEH001199
https://doi.org/10.1070/RC2005v074n12ABEH001199

[8] Tselishchev A., Zakharov I., Loriya M. et al.: Voprosy Khim. i Khim. Technol., 2012, 2, 39.

[9] Loriya M., Ijagbuji A., Tselischev A. et al.: Adv. Mat. Res., 2013, 660, 51. https://doi.org/10.4028/www.scientific.net/AMR.660.51
https://doi.org/10.4028/www.scientific.net/AMR.660.51

[10] Tselishchev A., Lòriya M., Zakharov I.: Visnyk Kiev Polytech. Inst., 2011, 65, 111.

[11] Zakharov I., Ijagbuji A., Tselischev A. et al.: J. Environ. Chem. Eng., 2015, 3, 405. https://doi.org/10.1016/j.jece.2014.08.008
https://doi.org/10.1016/j.jece.2014.08.008

[12] Zamilov M., Godin S.: Quant. Potent. Corp., 2012, 1.

[13] Wang X., Wang J., Guo W. et al.: J. Hazard. Mater, 2009, 169, 486 – 491. https://doi.org/10.1016/j.jhazmat.2009.03.122
https://doi.org/10.1016/j.jhazmat.2009.03.122

[14] Shah Y., Pandit A., Moholkar V.: Cavitation Reaction Engineering. Kluwer Academic/Plenum Publ., New York 1999. https://doi.org/10.1007/978-1-4615-4787-7
https://doi.org/10.1007/978-1-4615-4787-7

[15] Tselischev A., Nosach V., Koshovets M. et al.: Pat. UA 104811 MEI G05D 19/00, Publ. Febr. 25, 2016.

[16] Tselishchev A., Zakharov I., Loriya M. et al.: Khim. Promysh. Ukrainy, 2014, 121, 39.

[17] Tselischev A., Nosach V., Koshovets M. et. al.: Pat. UA 105427 MEI S10G 2/100, Publ. March 25, 2016.

[18] Jiang H., Gong H., Yang Z. et al.: React. Kinetic Catal. Lett., 2002, 75, 315. https://doi.org/10.1023/A:1015207214720
https://doi.org/10.1023/A:1015207214720

[19] Tselishchev A., Lòriya M., Eliseev P. et al.: East. Eur. J. Enterp. Technol., 2015, 6, 48.

[20] Tselischev A., Elissev P., Lòryia M. et al.: Matematicheskoe Modelirovanie Technologicheskikh Protsessov. Vostochnoukr. Nats. Univ., Lugansk 2011.