Quantitative Determination of Ephedrine Hydrochloride in Pharmaceutical Injections by Highly Sensitive Turbidimetric and Reversed-Phase Combined with UFLC Methods

: pp. 269-274
Universities of Baghdad, College of Science, Department of Chemistry

In this paper, turbidimetric and reversed-phase ultra-fast liquid chromatography (UFLC) methods were described for the quantitative determination of ephedrine hydrochloride in pharmaceutical injections form. The first method is based on measuring the turbidimetric values for the formed yellowish white precipitate in suspension status in order to determine the ephedrine hydrochloride concentration. The suspended substance is formed as a result of the reaction of ephedrine hydrochloride with phosphomolybdic acid which was used as a reagent. The physical and chemical characteristics of the complex were investigated. The calibration graphs of ephedrine were established by turbidity method. While the second method (UFLC) was conducted using the methanol-water (55+45, v/v) as the mobile phase with adjusted water pH 3.5. The ephedrine hydrochloride was detected and measured using UV detector at 260 nm. The linearity of ephedrine was obtained in the range of 0.09–0.39 mmol•l-1. The detection limits (LOD) for the ephedrine hydrochloride were found to be 0.4 and 0.0044 mmol•l-1 by turbidity and UFLC, respectively. The developed methods were successfully applied for the quantitative determination of ephedrine hydrochloride in laboratory preparations (standard) and in commercial pharmaceutical injections. The two methods have given relative standard deviations (R.S.D.) in the range of 0.65–1.69 %, which indicates reasonable repeatability and high precision of both methods.

[1] Pharmacopoeia of the People’s Republic of China, v.1. 1990.
[2] Liu Y.M., Sheu S.J.: J. Chromatogr. A, 1992, 600, 370. https://doi.org/10.1016/0021-9673(92)85575-E
[3] Mei F., Xing X., Tang Q. et al.: Chinese J. Integrat. Medicine, 2016, 22, 445. https://doi.org/10.1007/s11655-014-1952-x
[4] Wagner H., Bauer R., Melchart D., Staudinger A.: Herba Ephedrae – Mahuang. [in:] Wagner H., Bauer R., Melchart D., Staudinger A. (Eds.), Chromatographic Fingerprint Analysis of Herbal Medicines, v. IV. Springer, Cham, 2016, 107-114. https://doi.org/10.1007/978-3-319-32328-2_11
[5] Abourashed E., El‐Alfy A., Khan I., Walker L.: Phytother. Res., 2003, 17, 703. https://doi.org/10.1002/ptr.1337
[6] Pharmacopoeia B., A96, 1972.
[7] Şentürk Z., Erk N., Özkan S. et al.: J. Pharm. Biomed., 2002, 29, 291. https://doi.org/10.1016/S0731-7085(02)00065-1
[8] Abdel-Ghani N., Rizk M., Mostafa M.: Spectrochim. Acta A, 2013, 111, 131. https://doi.org/10.1016/j.saa.2013.03.038
[9] Moustafa A., Hegazy M., Mohamed D., Ali O.: J. AOAC Int., 2018, 101, 414. https://doi.org/10.5740/jaoacint.17-0078
[10] Parimoo P., Umapathi P., Srinivasan K.: Indian Drugs, 1992, 29, 442.
[11] Pascual-Marti M., Marin Saez R., Iranzo Adrian J.: Fresen. J. Anal. Chem., 1995, 352, 396. https://doi.org/10.1007/BF00322242
[12] Miao L., Liu Y., Li H. et al.: Drug Test. Analys., 2017, 9, 221. https://doi.org/10.1002/dta.1963
[13] Mateus-Avois L., Mangin P., Saugy M.: J. Chromatogr. B, 2003, 791, 203. https://doi.org/10.1016/S1570-0232(03)00222-8
[14] An Q., Dong Y., Lu N., Li N.: J. Liq. Chromatogr. R. T., 2017, 40, 177. https://doi.org/10.1080/10826076.2017.1287723
[15] Tircova B., Kozlik P.: Chromatographia, 2017, 80, 523. https://doi.org/10.1007/s10337-016-3170-5
[16] Boberić-Borojević D., Radulović D., Ivanović D., Ristić P.: J. Pharm. Biomed., 1999, 21, 15. https://doi.org/10.1016/S0731-7085(99)00103-X
[17] Nakano M., Morimoto Y., Tajima S. et al.: J. Pharm. Soc. Japan, 2000, 120, 583. https://doi.org/10.1248/yakushi1947.120.6_583
[18] El-Haj B., Al-Amri A., Hassan M. et al.: Forensic Sci. Int., 2003, 135, 16. https://doi.org/10.1016/S0379-0738(03)00101-4
[19] Gentili S., Torresi A., Marsili R. et al.: J. Chromatogr. B, 2002, 780, 183. https://doi.org/10.1016/S1570-0232(02)00522-6
[20] Mohamed K., Al-Hazmi A., Alasiri A., Ali M.: J. Chromatogr. Sci., 2016, 54, 1271. https://doi.org/10.1093/chromsci/bmw082
[21] Fotouhi L., Yamini Y., Molaei S., Seidi S.: J. Chromatogr. A, 2011, 1218, 8581. https://doi.org/10.1016/j.chroma.2011.09.078
[22] Baharfar M., Yamini Y., Seidi S., Karami M.: J. Chromatogr. B, 2017, 1068, 313. https://doi.org/10.1016/j.jchromb.2017.10.062
[23] Hanna G.: J. AOAC Int., 1995, 78, 946.
[24] Bogun B., Moore S.: Forensic Sci. Int., 2017, 278, 68. https://doi.org/10.1016/j.forsciint.2017.06.026
[25] Shawish H., Elhabiby M., Aziz H. et al.: Sensor. Actuat. B-Chem., 2016, 235, 18. https://doi.org/10.1016/j.snb.2016.05.058
[26] Hassan S., Kamel A., El-Naby H.: Talanta, 2013, 103, 330. https://doi.org/10.1016/j.talanta.2012.10.067
[27] Wang J.-W., Chiang M.-H., Lu C.-M., Tsai T.-H.: J. Chromatogr. B, 2016, 1026, 152. https://doi.org/10.1016/j.jchromb.2015.12.027
[28] Baharfar M., Yamini Y., Seidi S., Karami M.: J. Chromatogr. B, 2017, 1068, 313. https://doi.org/10.1016/j.jchromb.2017.10.062
[29] Rouhani G., Ertekin Z., Dinç E.: J. Liq. Chromatogr. R. T., 2017, 40, 333. https://doi.org/10.1080/10826076.2017.1300171
[30] Taghvimi A., Hamishehkar H.: J. Chromatogr. B, 2017, 1041, 113. https://doi.org/10.1016/j.jchromb.2016.11.039
[31] Xu J., Yan R.: J. Chromatogr. Sci., 2017, 55, 162. https://doi.org/10.1093/chromsci/bmw165
[32] Kojima A., Nishitani Y., Sato M. et al.: Drug Test. Analysis, 2016, 8, 189. https://doi.org/10.1002/dta.1803