Synthesis and Characterization of Indigenous Hydrophilized Polyvinylidene Fluoride Membrane for Drinking Water Purification: Experimental Study and Modeling Aspects

2020;
: pp. 239 - 250
1
University College of Technology (UCT), Osmania University
2
University College of Technology (UCT), Osmania University
3
University College of Technology (UCT), Osmania University
4
Membrane Separations Group, Chemical Engineering Division, CSIR-Indian Institute of Chemical Technology (CSIR-IICT)

Indigenous polyvinylidene fluoride (PVDF) membrane was hydrophilized by blending with polyvinyl alcohol (PVA) which was further cross-linked with glutaraldehyde and tested for surface water purification. Synthesized membranes were characterized by SEM and FTIR to study the surface and cross-sectional morphologies and intermolecular interactions, respectively. The effect of parameters, namely feed pressure, operational time, and the cross-linking agent concentration on the process efficiency was studied. PVDF/PVA blend membrane exhibited a reasonable process flux of 205 l/m2•h at 0.5 MPa and ambient temperature of 308 K. Experimental data were fitted to the limiting flux, osmotic pressure and pore blocking model to find the suitable theoretical model to predict the effect of concentration polarization on the separation performance and back flushing frequency. Osmotic pressure model was found to be a suitable model and the predicted results from the model were in agreement with the experimental findings. After the model was validated for the synthesized membrane, the simulation was carried out to predict the cake formation and the back flushing time was found as 97 h. Cost estimation was carried out for a pilot plant of capacity of 1000 m3/day to emphasize the economic feasibility of the developed process.

  1. Brehant A., Bonnelye V., Perez M.: Desalination, 2002, 144, 353. https://doi.org/10.1016/S0011-9164(02)00343-0
  2. Wilf M., Schierach M.: Desalination, 2001, 135, 61. https://doi.org/10.1016/S0011-9164(01)00139-4
  3. Pathak T., Chung K.: J. Ind. Eng. Chem., 2006, 12, 539.
  4. Hashim N., Liu F., Li K.: J. Membrane Sci., 2009, 345, 134. https://doi.org/10.1016/j.memsci.2009.08.032
  5. Meng X., Zhao L., Wang L. et al.: Water Sci. Technol., 2012, 66, 2074. https://doi.org/10.2166/wst.2012.380
  6. Liu F., Hashim N., Liu Y. et al.: J. Membrane Sci., 2011, 375, 1. https://doi.org/10.1016/j.memsci.2011.03.014
  7. Mailvaganam M., Goodboy K., Bai J.: US Pat. 6024872, Publ. Feb. 15, 2000.
  8. Rhim J.-W., Kim J.-S., Park C.-Y. et al.: Membrane J., 2013, 23, 312. http://membranejournal.or.kr/journalarticle.php?code=12316
  9. Li N., Xiao C., An S., Hu X.: Desalination, 2010, 250, 530. https://doi.org/10.1016/j.desal.2008.10.027
  10. Wang X., Chen C., Liu H., Ma J.: Water Res., 2008, 42, 4656. https://doi.org/10.1016/j.watres.2008.08.005
  11. Linares A., Nogales A., Rueda D., Ezquerra T.: J. Polym. Sci. B, 2007, 45, 1653. https://doi.org/10.1002/polb.21210
  12. Zhang Y., Li H. et al.: Desalination, 2006, 192, 214. https://doi.org/10.1016/j.desal.2005.07.037
  13. Rajaeian B., Heitz A., Tade M., Liu S.: J. Membrane Sci., 2015, 485, 48. https://doi.org/10.1016/j.memsci.2015.03.009
  14. Li X., Chen Y., Hu X. et al.: J. Membrane Sci., 2014, 471, 118. https://doi.org/10.1016/j.memsci.2014.08.018
  15. Xu J., Ma C., Cao B. et al.: Proc. Safety Environ. Protect., 2016, 104B, 564, https://doi.org/10.1016/j.psep.2016.06.020
  16. Azmi R., Goh P., Ismail A. et al.: J. Food Eng., 2015, 166, 165.https://doi.org/10.1016/j.jfoodeng.2015.06.001
  17. dos Reis E., Campos F., Lage A. et al.: Mater. Res., 2006, 9, 185.https://doi.org/10.1590/S1516-14392006000200014
  18. Madhumala M., Satyasri D., Sankarshana T., Sridhar S.: Ind. Eng. Chem. Res. 2014, 53, 17770. https://doi.org/10.1021/ie502566b
  19. Chowdari B., Kawamura J., Mizusaki J. (Eds.): Proceeding of the 13th Asian Conference on Solid State Ionics: Ionics for Sustainable World, Sendai Japan, 17-20 July 2012. World Scientific 2012.
  20. Bowen W., Jenner F.: Adv. Colloid Interface Sci., 1995, 56, 141. https://doi.org/10.1016/0001-8686(94)00232-2
  21. Iritani E.: Dry. Technol., 2013, 31, 146. https://doi.org/10.1080/07373937.2012.683123
  22. Foley G.: Membrane Filtration: A Problem Solving Approach with MATLAB. Cambridge University Press 2013, 88-103.
  23. Gehlert G., Abdulkadir M., Fuhrmann J., Hapke J.: J. Membrane Sci., 2005, 248, 63. https://doi.org/10.1016/j.memsci.2004.09.026
  24. Chellam S., Jacangelo J., Bonacquisti T.: Environ. Sci. Technol., 1998, 32, 75. https://doi.org/10.1021/es9610040
  25. Perry J.: Chemical Engineers’ Handbook, 4th edn. McGraw Hill, New York 1963.
  26. McCabe W., Smith J., Harriott P.: Unit Operations of Chemical Engineering, 5th edn. McGraw Hill, New York 1993.
  27. Bai H., Wang X., Zhou Y., Zhang L.: Prog. Nat. Sci. Mater. Int., 2012, 22, 250. https://doi.org/10.1016/j.pnsc.2012.04.011)