Amidoxime-Functionalized (9,10-Dioxoantracen-1-yl)hydrazones

2019;
: pp. 417 - 423
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University

New (9,10-dioxoanthracen-1-yl)hydrazones containing amidoxime fragments were synthesized by the interaction of corresponding hydrazones of malonodinitrile, ethyl cyanacetate, ethyl acetoacetate, and acetylacetone with hydroxylamine in boiling dioxane in the presence of sodium acetate. It was established that the reaction of N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)carbonohydrazonoyldicyanide 1 with NH2OH leads to the formation of 2-(2-(9,10-dioxo-9,10-dihydroanthracen-1-yl)hydrazinylidene)-N'1,N'3-dihydroxymalonimidamide 2 as the major product, and 3-amino-2-(2-(9,10-dioxo-9,10-dihydroanthracen-1-yl)hydrazinylidene)-3-(hydroxyimino)propanamide 3 as a minor product. The 1H, 13C NMR and LC-MS data showed that the interaction of 9,10-dioxoanthracenylhydrazone of acetylacetone 5 by hydroxylamine is accompanied with the elimination of the acetyl fragment formed 1-[2-(2-(hydroxyimino)propylidene)hydrazinyl]anthracene-9,10-dione 9. Possible mechanisms for the formation of amidoximes 3 and 9 are proposed. Quantum-chemical DFT calculations of the Gibbs free energy (G) to determine conformational advantage of Z- or E-isomers for the amidoxime form of the derivatives 2,3,7-9 were carried out using the M06-2X hybrid method with 6-311++G(d, p) basis set and the SMD solvation model in DMSO.

  1. Ahlam M.: Raf. Jour. Sci., 2008, 19, 59.
  2. Fylaktakidou K., Hadjipavlou-Litina D., Litinas K. et al.: Curr. Pharm. Des., 2008, 14, 1001. https://doi.org/10.2174/138161208784139675
  3. Katirtzi A.: Diploma Thesis, Charles University, 2015.
  4. Vaughan C.: Proc. Bayl. Univ. Med. Cent., 2005, 18, 76.
  5. Hawkins M., Lewis J.: Expert Opin. Drug Metab. Toxicol., 2012, 8, 1521. https://doi.org/10.1517/17425255.2012.724060
  6. Southworth H.: Statist. Med., 2014, 33, 2914. https://doi.org/10.1002/sim.6142
  7. Fontana R.: Gastroenterology, 2014, 146, 914. https://doi.org/10.1053/j.gastro.2013.12.032
  8. Van Ryn J., Stangier J., Haertter S. et al.: Thromb. Haemost., 2010, 103, 1116. https://doi.org/10.1160/TH09-11-0758
  9. Clement B., Kotthaus J., Kotthaus J., Schade D.: Pat. EP 2550966 A1 20130130, Publ. Jan. 30, 2013.
  10. Hall E., Kerrigan J., Ramachandran K. et al.: Antimicrob. Agents Chemother. 1998, 42, 666. https://doi.org/10.1128/AAC.42.3.666
  11. Schade D., Kotthaus J., Riebling L. et al.: J. Med. Chem. 2014, 57, 759. https://doi.org/10.1021/jm401492x
  12. Sperl S., Burgle M., Schmalix W. et al.: Pat. US 20060142305 A1 20060629, Publ. June 29, 2006.
  13. ClinicalTrials.gov. http://clinicaltrials.gov/ct2/show/NCT01069965
  14. Frank P., Novak R.: Biochem. Pharmacol., 1985, 34, 3609. https://doi.org/10.1016/0006-2952(85)90744-0
  15. Gan K., Teng C., Lin H. et al.: Biol. Pharm. Bull., 2008, 31, 1547. https://doi.org/10.1248/bpb.31.1547
  16. Halenova T., Nikolaeva I., Stasevych M. et al.: Res. J. Pharm. Biol. Chem. Sci., 2017, 8, 1626.
  17. Zvarych V., Stasevych M., Lunin V. et al.: Monatsh. Chem., 2016, 147, 2093. https://doi.org/10.1007/s00706-016-1839-y
  18. Stasevych M., Zvarych V., Lunin V. et al.: Monatsh. Chem., 2018, 149, 1111. https://doi.org/10.1007/s00706-018-2157-3
  19. Zvarich V., Stasevich M., Stanko O. et al.: Pharm. Chem. J., 2014, 48, 584. https://doi.org/10.1007/s11094-014-1154-z
  20. Stasevych M., Zvarych V., Lunin V. et al.: Indian J. Pharm. Sci., 2015, 77, 634. https://doi.org/10.4103/0250-474X.169062
  21.  Stasevych M., Zvarych V., Lunin V. et al.: SAR & QSAR in Environ. Res., 2017, 28, 355. https://doi.org/10.1080/1062936X.2017.1323796
  22. Stasevych M., Zvarych V., Musyanovych R. et al.: Chem. Chem. Technol., 2014, 8, 135. https://doi.org/10.23939/chcht08.02.135
  23. Stasevych M., Zvarych V., Lunin V. et al.: Chem. Chem. Technol., 2017, 11, 1. https://doi.org/10.23939/chcht11.01.001
  24. Stasevych M., Zvarych V., Khomyak S. et al.: Chem. Chem. Technol., 2018, 12, 300. https://doi.org/10.23939/chcht12.03.300
  25. Stasevych M., Zvarych V., Lunin V. et al.: Rus. J. Org. Chem., 2017, 53, 468. https://doi.org/10.1134/S1070428017030277
  26. Stasevych M., Zvarych V., Lunin V. et al.: Chem. Heterocycl. Compd., 2017, 53, 942. https://doi.org/10.1007/s10593-017-2148-z
  27. Gaussian 09, Revision B.01, Frisch M.J., Trucks G.W., Schlegel H.B. et al.: Gaussian, Inc., Wallingford CT, 2009.
  28. Exner O., Motekov N.: Collect. Czech. Chem. Commun. 1986, 51, 1444. https://doi.org/10.1135/cccc19861444
  29. Exner O.: Collect. Czech. Chem. Commun., 1965, 30, 652. https://doi.org/10.1135/cccc19650652
  30. Exner O., Motekov N.: Collect. Czech. Chem. Commun., 1978, 43, 2740. https://doi.org/10.1135/cccc19782740
  31. Tinant B., Dupont-Fenfau J., Declercq J.-P. et al.: Collect. Czech. Chem. Commun., 1989, 54, 3245. https://doi.org/10.1135/cccc19893245
  32. Srivastava R., Pereira M., Faustino W. et al.: Monatsh. Chem, 2009, 140, 1319. https://doi.org/10.1007/s00706-009-0186-7
  33. Vörös A., Mucsi Z., Baán Z. et al.: Org. Biomol. Chem., 2014, 12, 8036. https://doi.org/10.1039/C4OB00854E
  34. Rosenberg S., Silver S., Sayer J. et al.: J. Am. Chem. Soc., 1974, 96, 7986. https://doi.org/10.1021/ja00833a026
  35. Heckendorn R.: Bull. Soc. Chin. Belg. 1986, 95, 921. https://doi.org/10.1002/bscb.19860951101
  36. Novikov A., Bolotin D.: J. Phys. Org. Chem., 2017, e3772. https://doi.org/10.1002/poc.3772
  37. Bolotin D., Bokach N., Kukushkin V.: Coord. Chem. Rev., 2016, 313, 62. https://doi.org/10.1016/j.ccr.2015.10.005
  38. Tavakol H., Arshadi S.: J. Mol. Model., 2009, 15, 807. https://doi.org/10.1007/s00894-008-0435-4
  39. Su X., Aprahamian I.: Org. Lett., 2011, 13, 30. https://doi.org/10.1021/ol102422h
  40. Johnson J., Carvallo C., Dolliver D. et al.: Aust. J. Chem., 2007, 60, 685. https://doi.org/10.1071/CH07157