DFT Study of Some Copper Complexes and Their Detection Limit

P.O. Box 165 RP, Tlemcen, 13000, Algeria; B.P. 119, Tlemcen, 13000, Algeria
Superior School of Applied Sciences; Laboratory ToxicoMed, University of Abou Bekr Belkaïd
Superior School of Applied Sciences

A theoretical investigation was probed to shed light on the correlation between low detection limit (LOD) in AdSV technique and metal trace complexes stability energy. The study was conducted by means of DFT calculations of copper traces complexation by using three different organic molecules as chelating agents, such as: morin, red pyrogallol and thymolphtalexone. The quantum chemistry calculations were carried out at the B3LYP/6-31G(d) level implemented in Gaussian 09 program package. The results of the electrophilicity index ω indicate that all the studied molecules have a tendency to exchange electron with copper. The negative values of free energy G and enthalpy H show that the complexation reactions are spontaneous in nature and exothermic.  According to DFT calculations, copper-red pyrogallol complex with better detection limit (0.07 ng•mL-1) has the lowest total energy (-5100.213 a.u.). Thus, there is a very strong relationship between the total energy of the three complexes and their detection limits in AdSV technique. Hence, the more stable complex has the better detection limit value.

[1] Ilyechova, E.Y.; Bonaldi, E.; Orlov, I.A.; Skomorokhova, E.A.; Puchkova, L.V.; Broggini, M. CRISP-R/Cas9 Mediated Deletion of Copper Transport Genes CTR1 and DMT1 in NSCLC Cell Line H1299. Biological and Pharmacological Consequences. Cell. 2019, 8, 322. https://doi.org/10.3390/cells8040322
[2] Pahonțu, E.; Ilieș, D.-C.; Shova, S.; Paraschivescu, C.; Badea, M.; Gulea, A.; Roșu, T. Synthesis, Characterization, Crystal Structure and Antimicrobial Activity of Copper(II) Complexes with the Schiff Base Derived from 2-Hydroxy-4-Methoxybenzaldehyde. Molecules 2015, 20, 5771-5792. https://doi.org/10.3390/molecules20045771
[3] Attar, T., Medjati, N.D., Harek, Y., Larabi, L. Determination of Zinc levels in Healthy Adults from the West of Algeria by Differential Pulse Anodic Stripping Voltammetry. JAC 2013, 6, 855-860. https://doi.org/10.24297/jac.v6i1.964
[4] Abu-Shandi, K.H. Catalytic Oxidation of Cyclohex-2-enol at Porous Iron Zeolite-like Material: Investigations by GC/MS, Polarography and X-ray Powder Diffraction. Chem. Chem. Technol. 2018, 12, 147-153. https://doi.org/10.23939/chcht12.02.147
[5] Attar, T.; Dennouni-Medjati, N.; Harek, Y.; Larabi, L. The Application of Differential Pulse Cathodic Stripping Voltammetry in the Determination of Trace Copper in Whole Blood. J. Sens. Instrum. 2013, 1, 31-38. https://doi.org/10.7726/jsi.2013.1003
[6] Attar, T.; Harek, Y.; Larabi, L. Determination of Copper in Whole Blood by Differential Pulse Adsorptive Stripping Voltammetry. Mediterr. J. Chem. 2014, 2, 691-700. https://doi.org/10.13171/mjc.2.6.2014.22.02.30
[7] Al-Rashdi, A.A.; Gahlan, A.A.; Farghaly, O.A. Selective Preconcentration of Ultra Trace Copper (II) ion Using Square Wave Cathodic Adsorptive Stripping Voltammetry at Modified Carbon Past Electrode. Int. J. Electroche. Sci. 2020, 15, 977-989. https://doi.org/10.20964/2020.01.83
[8] Attar, T.; Harek, Y.; Larabi, L. Determination of Ultra Trace Levels of Copper in Whole Blood by Adsorptive Stripping Voltammetry. J. Korean. Chem. Soc. 2013, 57, 568-573. https://doi.org/10.5012/jkcs.2013.57.5.568
[9] Sander, S. Simultaneous Adsorptive Stripping Voltammetric Determination of Molybdenum(VI), Uranium(VI), Vanadium(V), and Antimony(III). Anal. Chim. Acta 1999, 394, 81-89. https://doi.org/10.1016/S0003-2670(99)00218-4
[10] Bond, A.M.; Kratsis, S.K.; Newman, O.M.G. Combined Use of Differential Pulse Adsorptive and Anodic Stripping Techniques for the Determination of Antimony(III) and Antimony(V) in Zinc Electrolyte. Anal. Chim. Acta 1998, 372, 307-314. https://doi.org/10.1016/S0003-2670(98)00323-7
[11] Wagner, W.; Sander, S.; Henze, G. Trace Analysis of Antimony (III) and Antimony (V) by Adsorptive Stripping Voltammetry. Fresenius J. Anal. Chem. 1996, 354, 11-15. https://doi.org/10.1007/s002169600002
[12] Aguilar, J.C.; Rodríguez de San Miguel, E.; de Gyves, J. Adsorptive Stripping Voltammetry of In(III) in the Presence of Pyrogallol Red in Chloride-acetate Media. Rev. Soc. Quím. Mex. 2001, 45, 17-20.
[13] Grabarczyk, M.; Adamczyk, M. A Simple, Fast, and Inexpensive Simultaneous Determination of Trace Bismuth(III) and Lead(II) in Water Samples by Adsorptive Stripping Voltammetry. J. Anal. Method. Chem. 2017, 2017, 1. https://doi.org/10.1155/2017/1486497
[14] Deswati, D.; Suyani, H.; Safni, S.; Loekman, U.; Pardi, H. Simultaneous Determination of Cadmium, Copper and Lead in Sea Water by Adsorptive Stripping Voltammetry in the Presence of Calcon as a Complexing Agent. Indo. J. Chem., 2013, 13, 236. https://doi.org/10.22146/ijc.21282
[15] Oleneva, E.; Khaydukova, M.; Ashina, J.; Yaroshenko, I.; Jahatspanian, I.; Legin, A.; Kirsanov, D. A Simple Procedure to Assess Limit of Detection for Multisensor Systems. Sensors 2019, 19, 1359. https://doi.org/10.3390/s19061359
[16] Sanchez, J.M. Estimating Detection Limits in Chromatography from Calibration Data: Ordinary Least Squares Regression vs. Weighted Least Squares. Separations 2018, 5, 49. https://doi.org/10.3390/separations5040049
[17] Attar, T.; Messaoudi, B.; Benhadria, N. DFT Theoretical Study of Some Thiosemicarbazide Derivatives with Copper. Chem. Chem. Technol. 2020, 14, 20-25. https://doi.org/10.23939/chcht14.01.020
[18] Benhadria, N.; Attar, T.; Messaoudi, B. Understanding the Link Between the Detection Limit and the Energy Stability of Two Quercetin-Antimony Complexes by Means of Conceptual DFT. S. Afr. J. Chem. 2020, 73, 120-124. https://doi.org/10.17159/0379-4350/2020/v73a17
[19] Safavi, A.; Shams, E. Determination of Trace Amounts of Copper(II) by Adsorptive Stripping Voltammetry of its Complex with Pyrogallol Red. Anal. Chim. Acta 1999, 385, 265-272. https://doi.org/10.1016/S0003-2670(98)00580-7
[20] Babaei, A.; Babazadeh, M.; Shams, E. Simultaneous Determination of Iron, Copper, and Cadmium by Adsorptive Stripping Voltammetry in the Presence of Thymolphthalexone. Electroanalysis 2007, 19, 978-985. https://doi.org/10.1002/elan.200603812
[21] Hajian, R.; Shams, E. Application of Adsorptive Stripping Voltammetry to the Determination of Bismuth and Copper in the Presence of Morin. Anal. Chim. Acta 2003, 491, 63-69. https://doi.org/10.1016/S0003-2670(03)00789-X
[22] Calais, J.-L. Int. J. Density-functional theory of atoms and molecules. R.G. Parr and W. Yang, Oxford University Press, New York, Oxford, 1989. IX + 333 pp. Price £45.00. Quantum Chem. 1993, 47, 101. https://doi.org/10.1002/qua.560470107
[23] Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Rev. Lett. 1996, 77, 3865. https://doi.org/10.1103/PhysRevLett.77.3865
[24] Voorhis T., Scuseria G.: Mol. Phys., 1997, 92, 601. https://doi.org/10.1080/002689797170347
[25] Voorhis, T.V.; Scuseria, G.E. A Novel Form for the Exchange-correlation Energy Functional. J. Chem. Phys. 1998, 109, 400. https://doi.org/10.1063/1.476577
[26] Domingo, L.R.; Aurell, M.-J.; Perez, P.; Contreras, R. Quantitative Characterization of the Global Electrophilicity Power of Common Diene/dienophile Pairs in Diels–Alder Reactions. Tetrahedron 2002, 58, 4417-4423. https://doi.org/10.1016/S0040-4020(02)00410-6
[27] Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R. et al. Gaussian 09, Revision A.02 ; Gaussian Inc.: Wallingford CT, 2009, 34. 
[28] Besler, B.H.; Merz Jr, K.M.; Kollman, P.A. Atomic Charges Derived from Semiempirical Methods. J. Comput. Chem. 1990, 11, 431-439. https://doi.org/10.1002/jcc.540110404
[29] Electronegativity, Structure and Bonding, Vol. 66; Sen, K.; Jorgenson, C., Eds.; Springer Verlag: Berlin, Heidelberg, New York, London, Paris, Tokyo, 1987.
[30] Pal, S.; Roy, R.; Chandra, A.K. Change of Hardness and Chemical Potential in Chemical Binding: A Quantitative Model. J. Phys. Chem. 1994, 98, 2314-2317. https://doi.org/10.1021/j100060a018
[31] Parr, R.G.; von Szentpaly, L.; Liu, S. Electrophilicity Index. J. Am. Chem. Soc. 1999, 121, 1922-1924. https://doi.org/10.1021/ja983494x
[32] Geerlings, P.; De Proft, F.; Langenaeker, W. Conceptual Density Functional Theory. Chem. Rev. 2003, 103, 1793-1874. https://doi.org/10.1021/cr990029p
[33] Parr, R.G.; Donnelly, R.A.; Levy, M.; Palke, W.E. Electronegativity: The Density Functional Viewpoint. J. Chem. Phys. 1978, 68, 3801. https://doi.org/10.1063/1.436185
[34] Kohn, W.; Sham, L.G. Self-Consistent Equations Including Exchange and Correlation Effects. J. Phys. Rev. 1965, 140, A1133. https://doi.org/10.1103/PhysRev.140.A1133
[35] Parr, R.G.; Pearson, R.G. Absolute Hardness: Companion Parameter to Absolute Electronegativity. J. Am. Chem. Soc. 1983, 105, 7512-7516. https://doi.org/10.1021/ja00364a005
[36] Pearson, R.G. Absolute Electronegativity and Hardness: Application to Inorganic Chemistry. Inorg. Chem. 1988, 27, 734-740. https://doi.org/10.1021/ic00277a030
[37] Attar, T.; Benchadli, A.; Messaoudi, B.; Benhadria, N.; Choukchou-Braham, E. Experimental and Theoretical Studies of Eosin Y Dye as Corrosion Inhibitors for Carbon Steel in Perchloric Acid Solution. Bull. Chem. React. Eng. Catal. 2020, 15, 454-464. https://doi.org/10.9767/bcrec.15.2.7753.454-464
[38] Chygyrynets, E.; Vorobyova, V. A Study of Rape-Cake Extract as Eco-Friendly Vapor Phase Corrosion Inhibitor. Chem. Chem. Technol. 2014, 8, 235-242. https://doi.org/10.23939/chcht08.02.235
[39] Koopmans, T. Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica. 1933, 1, 104-113. https://doi.org/10.1016/S0031-8914(34)90011-2
[40] Samsonowicz, M.; Regulska, E.; Świsłocka, R.; Butarewicz, A. Molecular Structure and Microbiological Activity of Alkali Metal 3,4-Dihydroxyphenylacetates. J. Saudi Chem. Soc. 2018, 22, 896-907. https://doi.org/10.1016/j.jscs.2018.01.009
[41] Jaramillo, P.; Domingo, L.R.; Chamorro, E.; Pérez, P. A Further Exploration of a Nucleophilicity Index Based on the Gas-phase Ionization Potentials. J. Mol. Struct. Theochem 2008, 865, 68-72. https://doi.org/10.1016/j.theochem.2008.06.022
[42] Contreras, R.; Andres J.; Safont, V.S.; Campodonico, P.; Santos, J.G. A Theoretical Study on the Relationship between Nucleophilicity and Ionization Potentials in Solution Phase. J. Phys. Chem. A. 2003, 107, 5588-5593. https://doi.org/10.1021/jp0302865
[43] Zhang, K.; Zhou, X.; Du, P.; Zhang, T.; Cai, M.; Sun, P.; Huang, C.-H.Oxidation of β-Lactam Antibiotics by Peracetic Acid: Reaction Kinetics, Product and Pathway Evaluation. Water. Res. 2017, 123, 153-161. https://doi.org/10.1016/j.watres.2017.06.057
[44] Parr, R.G.; Yang, W. Density Functional Approach to the Frontier-electron Theory of Chemical Reactivity. J. Am. Chem. Soc. 1984, 106, 4049-4050. https://doi.org/10.1021/ja00326a036
[45] Yang, W.; Mortier, W.J. The Use of Global and Local Molecular Parameters for the Analysis of the Gas-phase Basicity of Amines. J. Am. Chem. Soc. 1986, 108, 5708-5711. https://doi.org/10.1021/ja00279a008
[46] De Proft, F.; Martin, J.M.L.; Geerlings, P. Calculation of Molecular Electrostatic Potentials and Fukui Functions Using Density Functional Methods. Chem. Phys. Lett. 1996, 256, 400-408. https://doi.org/10.1016/0009-2614(96)00469-1
[47] Nguyen, L.T.; Le, T.N.; De Proft, F.; Chandra, A.K.; Langenaeker, W.; Nguyen, M.T.; Geerlings, P.  Mechanism of [2 + 1] Cycloadditions of Hydrogen Isocyanide to Alkynes:  Molecular Orbital and Density Functional Theory Study. J. Am. Chem. Soc. 1999, 121, 5992-6001. https://doi.org/10.1021/ja983394r
[48] Alam, M.J.; Ahmad, S. Anharmonic Vibrational Studies of l-Aspartic Acid Using HF and DFT Calculations. Spectrochim. Acta A 2012, 96, 992-1004. https://doi.org/10.1016/j.saa.2012.07.135
[49] Demir, P.; Akman, F. Molecular Structure, Spectroscopic Characterization, HOMO and LUMO Analysis of PU and PCL Grafted onto PEMA-co-PHEMA with DFT Quantum Chemical Calculations. J. Mol. Struct. 2017, 1134, 404-415. https://doi.org/10.1016/j.molstruc.2016.12.101
[50] Kopacz, M. Quercetin- and Morinsulfonates as Analytical Reagents. J. Anal. Chem. 2003, 58, 225-229. https://doi.org/10.1023/A:1022630319311 
[51] Rakitskaya T., Truba A., Radchenko E.; Golub, A. et al.: Mono- and Bimetallic Complexes of Mn(II), Co(II), Cu(II), and Zn(II) with Schiff Bases Immobilized on Nanosilica as Catalysts in Ozone Decomposition Reaction. Chem. Chem. Technol. 2018, 12, 1-6. https://doi.org/10.23939/chcht12.01.001