DFT Theoretical Study of Some Thiosemicarbazide Derivatives with Copper

2020;
: pp. 20 - 25
1
Superior School of Applied Sciences; Laboratory ToxicoMed, University of Abou Bekr Belkaïd
2
P.O. Box 165 RP, Tlemcen, 13000, Algeria; B.P. 119, Tlemcen, 13000, Algeria
3
Superior School of Applied Sciences

A theoretical study of the detection limit concept of copper traces in aqueous solution by using two thiosemicarbazides derivatives as ligands: 4-ethyl-3-thiosemicarbazide and thiosemicarbazide has been thoroughly investigated. The study was carried out experimentally by adsorptive stripping voltammetry. The quantum chemistry calculations, carried out at the 6-31G(d) basis set in conjunction with local spin density approximation method (LSDA), implemented in Gaussian 09 program package, show the existence of a very strong relationship between the total energy of copper complexes and the detection limit; thus, the more stable complex has the lower detection limit value. The obtained results are in a good agreement with the experimental findings.

  1. Bhattacharya P., Misra S., Hussain M.: Scientifica, 2016, 2016, 1. https://doi.org/10.1155/2016/5464373
  2. Attar T., Harek Y., Larabi L.: Mediterr. J. Chem., 2014, 2, 691. https://doi.org/10.13171/mjc.2.6.2014.22.02.30
  3. Mojtaba H., Ahmad R., Mohammad Y.: Sens. Actuator. B, 2011, 160, 121. https://doi.org/10.1016/j.snb.2011.07.022
  4. Xing X., Liu S., Yu J. et al.: Biosens. Bioelectron., 2012, 31, 277. https://doi.org/10.1016/j.bios.2011.11.012
  5. Farghaly O., Abdel-Hameed R., Abu-Nawwas A.: Int. J. Electrochem. Sci., 2014, 9, 3287.
  6. Abu-Shandi K.: Chem. Chem. Technol., 2018, 12, 147. https://doi.org/10.23939/chcht12.02.147
  7. Yue W., Bange A., Riehl B. et al.: Electroanalysis, 2012, 24, 1909. https://doi.org/10.1002/elan.201200302
  8. Yardım Y., Gülcan M., Sentürk Z.: Food Chem., 2013, 141, 1821. https://doi.org/10.1016/j.foodchem.2013.04.085
  9. Idris A., Mabuba N., Arotiba O.: J. Electroanal. Chem., 2015, 758, 7. https://doi.org/10.1016/j.jelechem.2015.10.009
  10. Ardila J., Oliveira G., Medeiros R. et al.: J. Electroanal. Chem., 2013, 690, 32. https://doi.org/10.1016/j.jelechem.2012.11.038
  11. Illuminati S., Annibaldi A., Truzzi C. et al.: J. Electroanal. Chem., 2015, 755, 182. https://doi.org/10.1016/j.jelechem.2015.07.023
  12. Abbasi S., Khani H., Tabaraki R.: Food Chem., 2010, 123, 507. https://doi.org/10.1016/j.foodchem.2010.03.043
  13. Attar T., Harek Y., Larabi L.: J. Korean. Chem. Soc., 2013, 57, 568. https://doi.org/10.5012/jkcs.2013.57.5.568
  14. Frisch M., Trucks G., Schlegel H. et al.: Gaussian 09, Revision A.02, Gaussian Inc Wallingford CT, 2009, 34.
  15. Domingo L., Aurell M., Perez P. et al.: Tetrahedron, 2002, 58, 4417. https://doi.org/10.1016/S0040-4020(02)00410-6
  16. Besler B., Merz K., Kollman P.: J. Comput. Chem., 1990, 11, 431. https://doi.org/10.1002/jcc.540110404
  17. Sen K., Jorgenson C. (Eds.): Electronegativity, Structure and Bonding, Vol. 66, Springer Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo 1987.
  18. Pal S., Roy R., Chandra R.: J. Phys. Chem., 1994, 98, 2314. https://doi.org/10.1021/j100060a018
  19. Parr R., von Szentpaly L., Liu S.: J. Am. Chem. Soc., 1999, 121, 1922. https://doi.org/10.1021/ja983494x
  20. Geerlings P., De Proft F., Langenaeker W.: Chem. Rev., 2003, 103, 1793. https://doi.org/10.1021/cr990029p
  21. Parr R., Donnelly R., Levy M. et al.: J. Chem. Phys., 1978, 68, 3801. https://doi.org/10.1063/1.436185
  22. Kohn W., Sham L.: J. Phys. Rev. A, 1965, 140, 1133. https://doi.org/10.1103/PhysRev.140.A1133
  23. Parr R.G., Pearson R.G.: J. Am. Chem. Soc., 1983, 105, 7512. DOI: 10.1021/ja00364a005
  24. Koopmans T.: Physica, 1933, 1, 104. https://doi.org/10.1016/S0031-8914(34)90011-2
  25. Jaramillo P., Domingo L., Chamorro E. et al.: J. Mol. Struct. Theochem., 2008, 865, 68. https://doi.org/10.1016/j.theochem.2008.06.022
  26. Contreras R., Andres J., Safont V. et al.: J. Phys. Chem. A., 2003, 107, 5588. https://doi.org/10.1021/jp0302865
  27. Parr R., Yang W.: J. Am. Chem. Soc., 1984, 106, 4049. https://doi.org/10.1021/ja00326a036
  28. Yang W., Mortier W.: J. Am. Chem. Soc., 1986, 108, 5708. https://doi.org/10.1021/ja00279a008
  29. De Proft F., Martin J., Geerlings P.: Chem. Phys. Lett., 1996, 256, 400. https://doi.org/10.1016/0009-2614(96)00469-1
  30. Nguyen L., Ngoc L., De Proft F. et al.: J. Am. Chem. Soc., 1999, 121, 5992. https://doi.org/10.1021/ja983394r
  31. Rakitskaya T., Truba A., Radchenko E. et al.: Chem. Chem. Technol., 2018, 12, 1. https://doi.org/10.23939/chcht12.01.001