Developing a Method for Determination of Urinary Delta-Amino-Levulinic Acid using Molecularly Imprinted Polymers

2020;
: pp. 334 - 342

Delta-amino-levulinic acid (ALA) has been introduced as a biological exposure index for workers exposed to lead. In this study, a new analytical method has been developed using molecularly imprinted polymers (MIPs) in microextraction by packed sorbent for urine samples. A spectrophotometric analysis was carried out for urine samples. Fourier transform infrared spectroscopy was used to determine the main constituents of MIPs. The optimized method was fast, sensitive, selective, easy to use and friendly to the environment. The results indicated that the developed method is a suitable and rapid method for the bio-monitoring of individuals exposed to lead.

  1. Liao L., Friesen M., Xiang Y.-B. et al.: Environ. Health Perspect., 2016, 124, 97. https://dx.doi.org/10.1289%2Fehp.1408171
  2. Park S., Elmarsafawy S., Mukherjee B. et al.: Hear. Res., 2010, 269, 48. https://doi.org/10.1016/j.heares.2010.07.004
  3. Yaman M.: J. Anal. At. Spectrom., 1999, 14, 275. https://doi.org/10.1039/A807432A
  4. Poreba R., Gac P., Poreba M., Andrzejak R.: Toxicol. Appl. Pharm., 2010, 249, 41. https://doi.org/10.1016/j.taap.2010.08.012
  5. García-Lestón J., Mendez J., Pasaro E., Laffon B.: Environ. Int., 2010, 36, 623. https://doi.org/10.1016/j.envint.2010.04.011
  6. Earl R., Burns N., Nettlebeck T., Baghurst P.: Aust. J. Psychol., 2016, 68, 98. https://doi.org/10.1111/ajpy.12096
  7. https://monographs.iarc.fr/wp-content/uploads/2018/06/mono87.pdf
  8. Tasmin S., Furusawa H., Ahmad S. et al.: Environ. Res., 2015, 136, 318. https://doi.org/10.1016/j.envres.2014.08.045
  9. https://www.acgih.org/forms/store/ProductFormPublic/documentation-of-the...
  10. Alexander C., Andersson H., Andersson L. et al.: J. Mol. Recognit., 2006, 19, 106. https://doi.org/10.1002/jmr.760
  11. Ansari S., Karimi M.: TrAC, 2017, 89, 146. https://doi.org/10.1016/j.trac.2017.02.002
  12. Abdel-Rehim M.: J. Chromatogr. A, 2010, 1217, 2569. https://doi.org/10.1016/j.chroma.2009.09.053
  13. Pereira J., Gonçalves J., Alves V., Câmara J.: Sample Preparat., 2013, 1, 38.
  14. Soleimani E., Bahrami A., Afkhami A., Shahna F.: J. Chromatogr. B, 2017, 1061-1062, 65. https://doi.org/10.1016/j.jchromb.2017.07.008
  15. Soleimani E., Bahrami A., Afkhami A.. et al.: Arch. Toxicol., 2018, 92, 213. https://doi.org/10.1007/s00204-017-2057-z
  16. Abdel-Rehim M., Andersson L., Altun Z., Blomberg L.: J. Liq. Chromatogr. Relat. Technol., 2006, 29, 1725. https://doi.org/10.1080/10826070600716843
  17. Yu J., Wang S., Zhao G. et al.: J. Chromatogr. B, 2014, 958, 130. https://doi.org/10.1016/j.jchromb.2014.03.023
  18. Moein M., Abdel-Rehim M.: Bioanalysis, 2015, 7, 2145. https://doi.org/10.4155/bio.15.153
  19. Blomberg L., Abdel-Rehim M.: LCGC Europé. 2009, 22, 8.
  20. Azari M. et al.: Microchem. J., 2017, 134, 270. https://doi.org/10.1016/j.microc.2017.06.019
  21. Wada O., Toyokawa K., Urata G. et al.: Occup. Environ. Med., 1969, 26, 240. https://doi.org/10.1136/oem.26.3.240
  22. Sun M., Stein E., Gruen F.: Clin. Chem., 1969, 15, 183.
  23. Oishi H., Nomiyama H., Nomiyama K., Tomokuni K.: J.Anal. Toxicol., 1996, 20, 106. https://doi.org/10.1093/jat/20.2.106
  24. Tomokuni K., Ichiba M., Hirai Y.: Ind. Health, 1992, 30, 119. https://doi.org/10.2486/indhealth.30.119
  25. Morita Y., Araki S., Sakai T. et al.: Ind. Health, 1994, 32, 85. https://doi.org/10.2486/indhealth.32.85
  26. Tomokuni K., Ichiba M., Hirai Y., Hasegawa T.: Clin. Chem., 1987, 33, 1665.