Stable silver nanoparticles were rapidly synthesized by simple, eco-friendly atmospheric pressure plasma method using non-ionic Tween 80 (polyoxyethylene-(80)-sorbitan monooleate) as capping agent. Influences of Tween 80 concentration on the formation efficiency of silver nanoparticle, their average size and stability have been studied. The synthesized silver nanoparticles had significant antibacterial activity on two strains of Gram bacteria. The AuNPs showed excellent catalytic activity for the reduction of p-nitrophenol (4-NP) to p-aminophenol (4-AP) in the presence of NaBH4.
- Zhang X., Liu Z., Shen W., Gurunathan S.: Int. J. Mol. Sci., 2016, 17, 1534. https://doi.org/10.3390/ijms17091534
- Abdelghany T., Al-Rajhi A., Al Abboud M. et al.: BioNanoSci., 2017, 8, 5. https://doi.org/10.1007/s12668-017-0413-3
- Saito G., Akiyama T.: J. Nanomater., 2015, 16, 1. https://doi.org/10.1155/2015/123696
- Mariotti D., Sankaran R.: J. Phys. D Appl. Phys., 2010, 43, 323001. https://doi.org/10.1088/0022-3727/43/32/323001
- Jin S., Kim S., Lee S., Kim J.: J. Nanosci. Nanotechnol., 2014, 14, 8094. https://doi.org/10.1166/jnn.2014.9428
- Hofft O., Endres F.: Phys. Chem. Chem. Phys., 2011, 13, 13472. https://doi.org/10.1039/C1CP20501C
- Lee S.-J., Lee H., Jeon K.-J. et al.: Nanoscale Res. Lett, 2016, 11, 344. https://doi.org/10.1186/s11671-016-1557-8
- Saito G., Akiyama T.: J. Nanomater., 2015, 16, 1. https://doi.org/10.1155/2015/123696
- Kelgenbaeva Z., Omurzak E., Ihara H. et al.: Phys. Status Solidi A, 2015, 212, 2951. https://doi.org/10.1002/pssa.201532502
- Nakasugi Y., Saito G., Yamashita T., Akiyama T.: J. Appl. Phys., 2014, 115, 123303. https://doi.org/10.1063/1.4869126
- Sabzehparvar M., Kiani F., Tabrizi N.: Mater. Today: Proceed., 2018, 5, 15821. https://doi.org/10.1016/j.matpr.2018.05.080
- Lin L., Starostin S., Hessel V., Wang Q.: Chem. Eng. Sci., 2017, 168, 360. https://doi.org/10.1016/j.ces.2017.05.008
- Hu Y., Li L., Zhang L., Lv Y.: Sensor. Actuat. B-Chem., 2017, 239, 1177. https://doi.org/10.1016/j.snb.2016.08.082
- Pivovarov A., Kravchenko A., Tishchenko A. et al.: Russ. J. Gen. Chem., 2015, 85, 1339. https://doi.org/10.1134/s1070363215050497.
- Skiba M., Pivovarov A., Makarova A. et al.: East.-Eur. J. Enterprise Technol., 2017, 6, 59. https://doi.org/10.15587/1729-4061.2017.118914
- Pivovarov О., Skіba М., Makarova А. et al.: Vopr. Khim. Khim. Tekhnol., 2017, 6, 82.
- Skiba M., Pivovarov A., Makarova A., Vorobyova V.: East.-Eur. J. Enterprise Technol., 2018, 2, 4. https://doi.org/10.15587/1729-4061.2018.127103
- Skiba M., Pivovarov A., Makarova A. et al.: Сhem. J. Moldova, 2018, 13, 7. https://doi.org/10.19261cjm.2018.475
- Skіba М., Pivovarov О., Makarova А., Parkhomenko V.: Vopr. Khim. Khim. Tekhnol., 2018, 3, 113.
- Skіba М., Vorobyova V., Pivovarov О. et al.: East.-Eur. J. Enterprise Technol., 2018, 5-6 . 51. https://doi.org/10.15587/1729-4061.2018.144602
- Li H., Zhang A., Hu Y. et al.: Nanoscale Res. Lett., 2012, 7, 612. https://doi.org/10.1186/1556-276X-7-612
- Le Ouay B., Stellacci F.: Nano Today, 2015, 10, 339. https://doi.org/10.1016/j.colsurfb.2018.06.027
- Singha J., Mehta A., Rawata M., Basu S.: J. Environ. Chem. Eng., 2018, 6, 1468. https://doi.org/10.1016/j.jece.2018.01.054
- Joseph D., Lee H., Huh Y., Han Y.: Mater. Design, 2018, 160, 169. https://doi.org/10.1016/j.matdes.2018.09.003
- Gangula A., Podila R., Karanam L. et al.: Langmuir, 2011, 27, 15268. https://doi.org/10.1021/la2034559
- Sondi I., Salopek-Sondi B.: J. Colloid Interf. Sci., 2004, 275, 177. https://doi.org/10.1016/j.jcis.2004.02.012
- Feng Q., Wu J., Chen G. et al.: J. Biomed. Mater. Res., 2000, 52, 662. https://doi.org/10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3