This study is aimed to use fly ash and limestone as raw materials for preparing alkali methoxide heterogeneous catalysts for transesterification of palm oil into biodiesel. The heterogeneous catalyst was synthesized from fly ash and limestone through wet and dry methods and calcined within 1073–1273 K. X-ray diffraction and scanning electron microscopy analyses indicated the well-dispersed presence of the Ca(OCH3)2 crystal over the fly ash and limestone framework, which was mixed using wet method and calcined at 1073 K (W-800). Results showed that W-800 exhibited larger surface area and more uniform active sites than the other catalysts. About 88.6 % of biodiesel was produced from commercial palm oil with W-800 as the catalyst. The product possesses physicochemical characteristics, such as density, kinematic viscosity and free fatty acid content, which satisfy the international biodiesel standard. The catalyst was used for biodiesel production for four cycles, and the biodiesel yield was maintained up to 91.87 % from the initial value.
- Ma F., Hanna M.: Bioresour.Technol., 1999, 70, 1. https://doi.org/10.1016/S0960-8524(99)00025-5
- Hadiyanto H., Lestari S., Widayat W.: Bull. React. Eng. Catal., 2016, 11, 21. https://doi.org/10.9767/bcrec.11.1.402.21-26
- Widayat W., Wicaksono A., Firdaus L., Okvitarini N.: IOP Conf. Ser. Mater. Sci. Eng., 2016, 107, 012044. https://doi.org/10.1088/1757-899X/107/1/012044
- Thinnakorn K., Tscheikuna J.: Appl. Catal. A-Gen., 2014, 470, 26. https://doi.org/10.1016/j.apcata.2014.02.016
- Yoosuk B., Udomsap P., Puttasawat B., Krasae P.: Bioresour. Technol., 2010, 101, 3784. https://doi.org/10.1016/j.biortech.2009.12.114
- Hu S., Guan Y., Wang Y., Han, H.: Appl. Energy, 2011, 88, 2685. https://doi.org/10.1016/j.apenergy.2011.02.012
- Lu H., Yu X., Yang S. et al.: Fuel, 2015, 165, 1. https://doi.org/10.1016/j.fuel.2015.10.072
- Tantirungrotechai J., Thapwatee S., Yoosuk B.: Fuel, 2013, 106, 279. https://doi.org/10.1016/j.fuel.2013.01.028
- Theam K., Islam A., Choo Y., Taufiq-Yap Y.: Ind. Crops Prod., 2015, 76, 281. https://doi.org/10.1016/j.indcrop.2015.06.058
- Lokman I., Rashid M., Taufiq-Yap YH.: Chinese J. Chem. Eng., 2015, 23, 1857. https://doi.org/10.1016/j.cjche.2015.07.028
- Rogers G., Lih M., Hougen O.: Alche J., 1966, 2, 369. https://doi.org/10.1002/aic.690120230
- Jang J., Lee H.: Constr. Build. Mater., 2015, 102, 260. https://doi.org/10.1016/j.conbuildmat.2015.10.172
- Kurniawan R., Sugiawan Y., Managi S.: J. Cleaner Prod., 2018, 201, 334. https://doi.org/10.1016/j.jclepro.2018.08.051
- Tasri A., Susilawati A.: Sustain. Energy Technol. Assessments, 2014, 7, 34. https://doi.org/10.1016/j.seta.2014.02.008
- Yao Z., Ji X., Sarker P. et al.: Earth Sci. Rev., 2015, 141, 105. https://doi.org/10.1016/j.earscirev.2014.11.016
- Solis L., Alejo L., Kiros Y.: J. Environ. Chem. Eng., 2016, 4, 4870. https://doi.org/10.1016/j.jece.2016.04.006
- Liu X., Piao X., Wang Y. et al.: Fuel, 2007, 87, 1076. https://doi.org/10.1016/j.fuel.2007.05.059
- Murayama N., Takahashi T., Shuku K. et al.: Int. J. Miner. Process, 2008, 87, 129. https://doi.org/10.1016/j.minpro.2008.03.001
- Jain D., Khatri C., Rani A.: Fuel Process. Technol., 2010, 91, 1015. https://doi.org/10.1016/j.fuproc.2010.02.021
- Hadiyanto H., Lestari S., Abdullah A. et al.: Int. J. Energy Environ. Eng., 2016, 7, 297. https://doi.org/10.1007/s40095-016-0212-6
- Ho W., Ng H., Gan S., Tan S.: Energy Convers. Manag., 2014, 88, 1167. https://doi.org/10.1016/j.enconman.2014.03.061
- Volli V., Purkait M.: J. Hazardous Mater., 2015, 297, 101. https://doi.org/10.1016/j.jhazmat.2015.04.066
- Van Gerpen J.: Fuel Process. Technol., 2005, 86, 1097. https://doi.org/10.1016/j.fuproc.2004.11.005
- Meher L., Sagar D., Naik S.: Renew. Sust. Energy Rev., 2006, 10, 248. https://doi.org/10.1016/j.rser.2004.09.002
- Algoufi Y., Hameed B.: Fuel Process. Technol., 2014, 126, 5. https://doi.org/10.1016/j.fuproc.2014.04.004
- Musa I.: Egypt J. Petrol., 2016, 25, 21. https://doi.org/10.1016/j.ejpe.2015.06.007
- Barnwal B., Sharma M.: Renew. Sust. Energy Rev., 2005, 9, 363. https://doi.org/10.1016/j.rser.2004.05.007
- Manique M., Lacerda L., Alves A., Bergmann C.: Fuel, 2017, 190, 268. https://doi.org/10.1016/j.fuel.2016.11.016
- Babajide O., Musyoka N., Petrik L., Ameer F: Catal. Today, 2012, 190, 54. https://doi.org/10.1016/j.cattod.2012.04.044
- Černoch M., Skopal F., Hájek M.: Eur. J. Lipid Sci. Technol., 2009, 111, 663. https://doi.org/10.1002/ejlt.200800255
- Birla A., Singh B., Upadhyay S., SharmaY.: Bioresour. Technol., 2012, 106, 95. https://doi.org/10.1016/j.biortech.2011.11.065
- Sirviö K., Heikkilä S., Hiltunen E., Niemi S.: Agron. Res., 2018, 16, 1247. https://agronomy.emu.ee/wp-content/uploads/2018/05/2018_AR_S1.pdf
- International Organization for Standardization. ISO 3104, Petroleum products -- Transparent and opaque liquids -- Determination of kinematic viscosity and calculation of dynamic viscosity, 1994.
- International Organization for Standardization. ISO 3675, Crude petroleum and liquid petroleum products -- Laboratory determination of density -- Hydrometer method, 1998.
- International Organization for Standardization. ISO 7537, Petroleum products -- Determination of acid number -- Semi-micro colour-indicator titration method, 1997.
- Yao Z., Ji X., Sarker P. et al.: Earth Sci. Rev., 2015, 141, 105. https://doi.org/10.1016/j.earscirev.2014.11.016
- Zhang S., Chen Z., Chen X., Gong X..: Fuel Chem. Technol., 2014, 42, 166. https://doi.org/10.1016/S1872-5813(14)60013-X
- Wdowin M., Franus M., Panek R. et al.: Clean Technol. Environ. Policy, 2014, 16, 1217. https://doi.org/10.1007/s10098-014-0719-6
- Franus W., Wdowin M., Franus M.: Environ. Monit. Assess., 2014, 186, 5721. https://doi.org/10.1007/s10661-014-3815-5
- Nakatani N., Takamori H., Takeda K., Sakugawa H.: Bioresour. Technol., 2009, 100, 1510. https://doi.org/10.1016/j.biortech.2008.09.007
- Yu X., Wen Z., Li H. et al.: Fuel, 2011, 90, 68. https://doi.org/10.1016/j.fuel.2010.11.009
- Maneerung T., Kawi S., Wang C-H.: Energy Convers. Manag., 2014, 92, 234. https://doi.org/10.1016/j.enconman.2014.12.057
- Wong Y., Tan Y., Taufiq-Yap Y., Ramli I.: Sains Malays., 2014, 43, 783. http://www.ukm.my/jsm/english_journals/vol43num5_2014/contentsVol43num5_...
- Hayyan A., Alam M., Mirghani M. et al.: Bioresour. Technol., 2010, 101, 4. https://doi.org/10.1016/j.biortech.2010.05.045
- Pappas G., Liatsi P., Kartsonakis I. et al.: J. Non-Cryst. Solids, 2008, 354, 755. https://doi.org/10.1016/j.jnoncrysol.2007.09.007
- Refaat A.: Int. J. Environ. Sci. Technol., 2011, 8, 203. https://dx.doi.org/10.1007/BF03326210
- Patterson A.: Phys. Rev., 1939, 56, 978. https://doi.org/10.1103/PhysRev.56.978
- Valverde J., Medina S.: Phys. Chem. Chem. Phys., 2015, 17, 21912. https://doi.org/10.1039/C5CP02715B
- Claudia B., Francesco C., Antonio L., Saverio F.: Ultrason. Sonochem., 2011, 18, 661. https://doi.org/10.1016/j.ultsonch.2010.08.011
- Ngamcharussrivichai C., Nunthasanti P., Tanachai S., Bunyakiat K.: Fuel Process. Technol., 2010, 91, 1409. https://doi.org/10.1016/j.fuproc.2010.05.014
- Teo S., Taufiq-Yap Y., Rashid U., Islam A.: RSC Advances, 2015, 5, 4266. https://doi.org/10.1039/C4RA11936C
- Deshmane V., Adewuyi Y.: Fuel, 2013, 107, 474. https://doi.org/10.1016/j.fuel.2012.12.080
- Liu X., Piao X., Wang Y., Zhu S.: Energy Fuels, 2008, 221, 313. https://doi.org/10.1021/ef700518h
- Kouzu M., Hidaka J-S.: Fuel, 2012, 93, 1. https://doi.org/10.1016/j.fuel.2011.09.015
- Mootabadi H., Salamatinia B., Bhatia S., AbdullahA.: Fuel, 2010, 89, 1818. https://doi.org/10.1016/j.fuel.2009.12.023