Biodiesel Synthesis from the Used Cooking Oil Using CaO Catalyst Derived from Waste Animal Bones

2021;
: pp. 583–590
1
Department of Chemical Engineering, Faculty of Engineering, Diponegoro University
2
Department of Chemical Engineering, Faculty of Engineering, Diponegoro University
3
1 Universitas Muhammadiyah Purwokerto, 2 Diponegoro University

The synthesis of biodiesel from the used cooking oil with CaO catalyst from waste animal bones has been investigated. The content of free fatty acids (FFA) in the used cooking oil was reduced by adsorption using activated charcoal from a salak peel. Biodiesel synthesis was carried out via transesterification using CaO catalyst. The CaO catalyst was obtained from waste animal bones calcined in the Ney Vulcan furnace. The effect of calcination temperature was studied in the range of 873‒1273 K. The effect of catalyst loading was investigated by varying within the range of 1‒9 wt %. The methanol to oil molar ratio was investigated in the range from 6:1 to 18:1. The effect of the transesterification reaction time was studied with a time variation of 1‒5 h. The optimum operating conditions were determined. Under these conditions, the yield of biodiesel produced was 97.56 % with an ester content of 96.06 %. It was shown that the physicochemical properties of biodiesel produced meet the standards.

  1. Abdullah N., Hasan S., Yusoff N.: Int. J. Mater. Sci. Eng., 2013, 1, 94. https://doi.org/10.12720/ijmse.1.2.94-99
  2. Buchori L., Istadi I., Purwanto P.: Sci. Study Res. Chem. Chem. Eng. Biotechnol. Food Ind., 2017, 18, 303. https://pubs.ub.ro/?pg=revues&rev=cscc6&num=201703&vol=3&aid=4619
  3. Tabatabaei M., Aghbashlo M., Dehhaghi M. et al.: Prog. Energy Combust. Sci., 2019, 74, 239. https://doi.org/10.1016/j.pecs.2019.06.001
  4. Talebian-Kiakalaieh A., Amin N., Mazaheri H.: Appl. Energy, 2013, 104, 683. https://doi.org/10.1016/j.apenergy.2012.11.061
  5. Buchori L., Istadi I., Purwanto P.: Bull. Chem. React. Eng. Catal., 2016, 11, 406. https://doi.org/10.9767/bcrec.11.3.490.406-430
  6. Devaraj K., Veerasamy M., Aathika S. et al.: J. Clean. Prod., 2019, 225, 18. https://doi.org/10.1016/j.jclepro.2019.03.244
  7. Lee S., Wong Y., Tan Y. et al.: Energy Convers. Manag., 2015, 93, 282. https://doi.org/10.1016/j.enconman.2014.12.067
  8. Lam M., Lee K., Mohamed A.: Biotechnol. Adv., 2010, 28, 500. https://doi.org/10.1016/j.biotechadv.2010.03.002
  9. Lee D., Park Y., Lee K.: Catal. Surv. Asia, 2009, 13, 63. https://doi.org/10.1007/s10563-009-9068-6
  10. Wei Z., Xu C., Li B.: Bioresour. Technol., 2009, 100, 2883. https://doi.org/10.1016/j.biortech.2008.12.039
  11. Chen G., Shan R., Shi J. et al.: Bioresour. Technol., 2014, 171, 428. https://doi.org/10.1016/j.biortech.2014.08.102
  12. Viriya-Empikul N., Krasae P., Puttasawat B. et al.: Bioresour. Technol., 2010, 101, 3765. https://doi.org/10.1016/j.biortech.2009.12.079
  13. Margaretha Y., Prastyo H., Ayucitra A. et al.: Int. J. Energy Environ. Eng., 2012, 3, 1. https://doi.org/10.1186/2251-6832-3-33
  14. Yang L., Zhang A., Zheng X.: Energy Fuel., 2009, 23, 3859. https://doi.org/10.1021/ef900273y
  15. Boey P., Ganesan S., Maniam G. et al.: Catal. Today, 2012, 190, 117. https://doi.org/10.1016/j.cattod.2011.11.027
  16. Nakatani N., Takamori H., Takeda K. et al.: Bioresour. Technol., 2009, 100, 1510. https://doi.org/10.1016/j.biortech.2008.09.007
  17. Corro G., Sánchez N., Pal U. et al.: Waste Manag., 2016, 47, 105. https://doi.org/10.1016/j.wasman.2015.02.001
  18. Farooq M., Ramli A., Naeem A.: Renew. Energy, 2015, 76, 362. https://doi.org/10.1016/j.renene.2014.11.042
  19. Obadiah A., Swaroopa G., Kumar S. et al.: Bioresour. Technol. 2012, 116, 512. https://doi.org/10.1016/j.biortech.2012.03.112
  20. Atadashi I., Aroua M., Aziz A. et al.: Renew. Sustain. Energy Rev., 2012, 16, 3275. https://doi.org/10.1016/j.rser.2012.02.063
  21. Buchori L., Ubay D., Syahidah K.: Reaktor, 2018, 18, 149. https://doi.org/10.14710/reaktor.18.03.149-154
  22. Nisar J., Razaq R., Farooq M. et al.: Renew. Energy, 2017, 101, 111. https://doi.org/10.1016/j.renene.2016.08.048
  23. Yang Z., Xie W.: Fuel Process. Technol., 2007, 88, 631. https://doi.org/10.1016/j.fuproc.2007.02.006
  24. Maneerung T., Kawi S., Dai Y. et al.: Energy Convers. Manag., 2016, 123, 487. https://doi.org/10.1016/j.enconman.2016.06.071
  25. Lim B., Maniam G., Hamid S.: Eur. J. Sci. Res., 2009, 33, 347.
  26. Ayetor G., Sunnu A., Parbey J.: Alexandria Eng. J., 2015, 54, 1285. https://doi.org/10.1016/j.aej.2015.09.011
  27. Balakrishnan K., Olutoye M., Hameed B.: Bioresour. Technol., 2013, 128, 788. https://doi.org/10.1016/j.biortech.2012.10.023
  28. Xie W., Zhao L.: Energy Convers. Manag., 2014, 79, 34. https://doi.org/10.1016/j.enconman.2013.11.041
  29. Thinnakorn K., Tscheikuna J.: Appl. Catal. A, 2014, 476, 26. https://doi.org/10.1016/j.apcata.2014.02.016
  30. Yan F., Yuan Z., Lu P. et al.: Renew. Energy, 2011, 36, 2026. https://doi.org/10.1016/j.renene.2010.10.032
  31. Lesbani A., Tamba P., Mohadi R. et al.: Indones. J. Chem., 2013, 13, 176. https://doi.org/10.22146/ijc.21302