Clay Enriched With Ca2+ and Cu2+ As the Catalyst for the Production of Methyl Esters from CPO on a Laboratory Scale

: pp. 678 - 683
Laboratory of Material Chemistry, University of Andalas
Laboratory of Physical Chemistry, University of Andalas
Laboratory of Natural Product Chemistry, University of Andalas
Laboratory of Material Chemistry, University of Andalas

Indarung clay (Indarung region, Indonesia) has been successfully enriched with Ca2+ and Cu2+ ions. XRF, XRD, FTIR, and SAA analyses confirmed that calcination process had no significant effect on improving its performance so that the clay was simply heated at 383 K before use. Measurements using AAS showed that the clay is enriched with Cu2+ ions more easily than Ca2+ ions. The catalytic activity test carried out for the transesterification of crude palm oilshowed that under the same reaction conditions Cu2+ enriched Indarung clay yields most methyl ester to compare with other four catalysts (Ca2+ enriched clay, parent clay, Ca-nitrate and Cu-nitrate).

[1] Jiménez-Gómez, C.P.; Cecilia, J.A.; Moreno-Tost, R.; Maireles-Torres, P. Selective Furfural Hydrogenation to Furfuryl Alcohol using Cu-based Catalysts Supported on Clay Minerals. Top. Catal. 2017, 4. (accessed Aug. 20, 2020)
[2] Leung, D.Y.C; Wu, X.; Leung, M.K.H. A Review on Biodiesel Production Using Catalyzed Transesterification. Appl. Energy 2010, 87, 1083–1095.
[3] Jia, L.; Li, Y.; Chen, J.; Guo, X.; Lou, S.; Duan, H. Montmorillonite-Supported KF/CaO: A New Solid Base Catalyst for Biodiesel Production. Res. Chem. Intermed. 2016, 42, 1791–1807.
[4] Dang, H.T.; Chen, B.-H.; Lee, D.-J. Optimization of Biodiesel Production from Transesterification of Triolein Using Zeolite LTA Catalysts Synthesized from Kaolin Clay. J. Taiwan Inst. Chem. Eng. 2017, 79, 14-22.
[5] Man. Z.; Elsheikh, Y.A.; Bustam, M.A.; Yusup, S.; Mutalib, M.I.A.; Muhammad, N. A Bronsted Ammonium Ionic Liquid-KOH Two-Stage Catalyst for Biodiesel Synthesis from Crude Palm Oil. Ind. Crops Prod. 2012, 41, 144-149.
[6] Olutoye, M.A.; Wong, S.W.; Chin, L.H.; Amani, H.; Asif, M.; Hameed, B.H. Synthesis of Fatty Acid Methyl Esters via the Transesterification of Waste Cooking Oil by Methanol with a Barium-Modified Montmorillonite K10 Catalyst. Renew. Energy 2015, 86, 392-398.
[7] Castro, C.S.; Garcia Jr., L.C.F.; Assaf, J.M. The Enhanced Activity of Ca/MgAl Mixed Oxide for Transesterification. Fuel Process. Technol. 2014, 125, 73-78.
[8] Soetaredjo, F.E.; Ayucitra, A.; Ismadji, S.; Maukar, A.L. KOH/Bentonite Catalysts for Transesterification of Palm Oil to Biodiesel. Appl. Clay Sci. 2011, 53, 341-346. https:/
[9] Abukhadra, M.R.; Ibrahim, S.M.; Yakout, S.M.; El-Zaidy, M.E.; Abdeltawab, A.A. Synthesis of Na+ Trapped Bentonite/Zeolite-P Composite as a Novel Catalyst for Effective Production of Biodiesel from Palm Oil; Effect of Ultrasonic Irradiation and Mechanism. Energy Convers. Manag. 2019, 196, 739-750.
[10] Vellayan, K.;González, B.; Trujillano, R.; Vicente, M.A.; Gil, A. Pd Supported on Cu-Doped Ti-Pillared Montmorillonite as Catalyst for the Ullmann Coupling Reaction. Appl. Clay Sci. 2018, 160, 126-131.
[11] Munir, M.; Ahmad, M.; Saeed, M.; Waseem, A.; Rehan, M.; Nizami, A.-S.; Zafar, M.; Arshad, M.; Sultana, S. Sustainable Production of Bioenergy from Novel Non-Edible Seed Oil (Prunuscerasoides) Using Bimetallic Impregnated Montmorillonite Clay Catalyst. Renew. Sust. Energ. Rev. 2019, 109, 321-332.
[12] Katkar, S.S.; Kategaonkar, A.H.; Vidhate K.N. MgO Supported Al2O3 Oxide: A New, Efficient, and Reusable Catalyst for Synthesis of Chalcones. Chem. Chem. Technol. 2020, 14 (2), 169–176.
[13] Nugroho, W. S. K.; Suseno, A.; Priyono, P. Pengaruh Temperatur Kalsinasi pada Modifikasi Lempung dengan Oksida Aluminium sebagai Pemilar. Jurnal Kimia Sains dan Aplikasi 2014, 17 (2), 43-47.
[14] McMurdie, H.F.; Morris, M.C.; Evans, E.H.; Paretzkin, B.; Wong-Ng, W.; Ettlinger, L.; Hubbard, C.R. Standard X-Ray Diffraction Powder Patterns from the JCPDS Research Associateship. Powder Diffr. 1986, 1 (2), 64-77.
[15] Antic, B.; Kremenovic, A.; Nikolic, A.S.; Stoiljkovic, M. Cation Distribution and Size-Strain Microstructure Analysis in Ultrafine Zn−Mn Ferrites Obtained from Acetylacetonato Complexes. J. Phys. Chem. B 2004, 108, 12646-12651.
[16] Tsipurski, S.I.; Drits, V.A. The Distribution of Octahedral Cations in the 2:1 Layers of Dioctahedral Smectites Studied by Oblique-Texture Electron Diffraction. Clay Miner. 1984, 19, 177-193.
[17] Drits, V.A.; Zviagina, B.B.; McCarty, D.K., Salyn, A.L. Factors Responsible for Crystal-Chemical Variations in the Solid Solutions from Illite to Aluminoceladonite and from Glauconite to Celadonite. Am. Mineral. 2010, 95 (2-3), 348-361.
[18] Neder, R.B.; Burghammer, M.; Grasl, Th.; Schulz, H.; Bram, A.; Fiedler, S. Refinement of the Kaolinite Structure from Single-Crystal Synchrotron Data. Clays Clay Miner. 1999, 47, 487-494.
[19] Chakraborty, A.K. Phase Transformation of Kaolinite Clay [Online]; Springer Nature, 2014. (accessed July 17, 2020).
[20] Djomgoue, P.; Njopwouo, D. FT-IR Spectroscopy Applied for Surface Clays Characterization. J. Surf. Mater. Adv. Technol. 2013, 3 (4), 275-282.
[21] Naderi, M. Chapter Fourteen - Surface Area: Brunauer–Emmett–Teller (BET). In Progress in Filtration and Separation; Tarleton, S., Eds.; Academic Press: UK, 2015; pp 586-608.
[22] Housecrift, C.; Sharpe, A.J. Inorganic Chemistry, 2nd edn.; Pearson: London, 2005.
[23] Puhan, S.; Saravanan, N.; Nagarajan, G.; Vedaraman, N. Effect of Biodiesel Unsaturated Fatty Acid on Combustion Characteristics of a DI Compression Ignition Engine. Biomass Bioenergy 2010, 34, 1079-1088.