Linear Hexane Isomerization Over Bimetallic Zeolite Catalysts

2021;
: pp. 330–335
1
V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Sciences of Ukraine
2
V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Sciences of Ukraine
3
V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Sciences of Ukraine
4
V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Sciences of Ukraine
5
V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Sciences of Ukraine
6
V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Sciences of Ukraine
7
V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Sciences of Ukraine

The aim of this study was to evaluate the activity and selectivity in isomerization of n-hexane of bimetallic zeolite catalysts containing a nickel transition metal in addition to palladium. Bimetallic bifunctional linear alkane isomerization catalysts based on the hydrogen form of MFI zeolite have been synthesized. The porous properties of the samples were investigated by means of low-temperature nitrogen adsorption/desorption, the size of the metal component – by TEM, and the catalytic properties – in the micro-pulse isomerization of n-hexane. Antisymbatic correlation between the temperature of the maximum yield of hexane isomers and the amount of nickel in the sample was found for a stable palladium content. The introduction of nickel allows to reduce the optimum process temperature from 598 to 523 K.

  1. Hidalgo J., Zbuzek M., Cerny R., Jisa P.: Central Europ. J. Chem., 2013, 12, 1. https://doi.org/10.2478/s11532-013-0354-9
  2. Primo A., Garcia H.: Chem. Soc. Rev., 2014, 43, 7548. https://doi.org/10.1039/C3CS60394F
  3. Liu S., Ren J., Zhang H. et al.: J. Catal., 2016, 335, 11. https://doi.org/10.1016/j.jcat.2015.12.009
  4. Dhar A., Vekariya R., Sharma P.: Petroleum, 2017, 3, 489. https://doi.org/10.1016/j.petlm.2017.02.001
  5. Izutsu Y., Oku Y., Hidaka Y. et al.: Catal. Lett., 2013, 143, 486. https://doi.org/10.1007/s10562-013-0973-y
  6. Ghouri A., Usman M.: J. Chem. Soc. Pak., 2017, 39, 919.
  7. Dhar A., Vekariya R., Bhadja P.: Cogent Chemistry, 2018, 4, 1514686. https://doi.org/10.1080/23312009.2018.1514686
  8. Yoshioka C., Garetto T., Cardoso D.: Catal. Today, 2005, 107-108, 693. https://doi.org/10.1016/j.cattod.2005.07.056
  9. Jordao M., Simoes V., Cardoso D.: Appl. Catal. A-Gen., 2007, 319, 1. https://doi.org/10.1016/j.apcata.2006.09.039
  10. Lima P., Garetto T., Cavalcante C. et al.: Catal. Today, 2011, 172, 195. https://doi.org/10.1016/j.cattod.2011.02.031
  11. Martins G., dos Santos E., Rodrigues M. et al.: Modern Res. Catal., 2013, 2, 119. https://doi.org/10.4236/mrc.2013.24017
  12. Patrylak K., Patrylak L., Manza I., Taranookha O.: Petrol. Chem., 2001, 41, 383.
  13. Patrylak L., Krylova M., Pertko O. et al.: J. Porous Mater., 2019, 26, 861. https://doi.org/10.1007/s10934-018-0685-1
  14. Patrylak L., Likhnyovskyi R., Vypyraylenko V. et al.: Adsorpt. Sci. Technol., 2001, 19, 525. https://doi.org/10.1260/0263617011494376
  15. Rouquerol F., Rouquerol J., Sing K.: Adsorption by Powders and Porous solids. Principles, Methodology and Applications. Academic Press, San Diego 1999.
  16. Cychosz K., Guillet-Nicolas R., García-Martínez J., Thommes M.: Chem. Soc. Rev., 2017, 46, 389. https://doi.org/10.1039/C6CS00391E
  17. Thommes M.: Chemie Ingenieur Technik, 2010, 82, 1059. https://doi.org/10.1002/cite.201000064
  18. Hernández M., Rojas F., Lara V.: J. Porous Mater., 2000, 7, 443. https://doi.org/10.1023/A:1009662408173
  19. Sing S., Williams R.: Adsorpt. Sci. Technol., 2004, 22, 773. https://doi.org/10.1260/0263617053499032
  20. Wan W., Su J., Zou X., Willhammar T.: Inorg. Chem. Front., 2018, 5, 2836. https://doi.org/10.1039/C8QI00806J
  21. Juneau M., Liu R., Peng Y. et al.: Chem. Cat. Chem., 2020, 12, 1826. https://doi.org/10.1002/cctc.201902039
  22. Peron D., Zholobenko V., de la Rocha M. et al.: J. Mater. Sci., 2019, 54, 5399. https://doi.org/10.1007/s10853-018-03250-59
  23. Mazaheri O., Kalbasi R.: RSC Adv., 2015, 5, 34398. https://doi.org/10.1039/C5RA02349A
  24. Patrylak L., Krylova M., Pertko O. et al.: Chem. Chem. Technol., 2020, 14, 234. https://doi.org/10.23939/chcht14.02.234
  25. Voloshyna Yu., Pertko O., Krylova M. et al.: Kataliz ta Naftohimia, 2019, 28, 20. https://doi.org/10.15407/kataliz2019.28.020
  26. Voloshyna Yu., Pertko O., Patrylak L., Yakovenko A.: Voprosy Khimii і Khimicheskoi Technologii, 2020, 6, 26. https://doi.org/10.32434/0321-4095-2020-133-6-26-32
  27. Karakoulia S., Heracleous E., Lappas A.: Catal. Today, 2019, in press. https://doi.org/10.1016/j.cattod.2019.04.072
  28. Bhavani A., Pandurangan A.: J. Mol. Catal. A-Chem., 2007, 267, 209. https://doi.org/10.1016/j.molcata.2006.11.044
  29. Barsi F., Cardoso D.: Braz. J. Chem. Eng., 2009, 26, 353. https://doi.org/10.1590/S0104-66322009000200012
  30. Patrylak L., Manza I., Vypirailenko V. et al.: Theor. Experim. Chem., 2003, 39, 263. https://doi.org/10.1023/A:1025729530977