Sustainable Adsorption Removal of Nickel and Chromium on Eco-Friendly Industrial Waste: Equilibrium Study

2021;
: pp. 161 - 169
1
Department of Chemical Engineering, Faculty of Engineering, El-Minia University
2
Sustainable Solution Group
3
Civil Engineering Department, Kuwait University

Adsorption of nickel and chromium was investigated using fuller’s earth. The experimental data were analyzed using five 2-parameter adsorption models and three 3-parameter models. The maximum adsorption capacities for nickel and chromium were 769 and 556 mg/g, respectively. The Langmuir isotherm model was found to have the best fitting indicating monolayer adsorption. The adsorption was found to have an exothermic nature.

  1. ATSDR. Priority List of Hazard Substances. Agency Toxic Subst Dis Regist (ATSDR) Dep Heal Hum Serv 2015. https://www.atsdr.cdc.gov/spl/resources/atsdr_2015_spl_support_document.pdf
  2. Water Quality Standard Handbook, Ch. 3, 2012, 56. https://www.epa.gov/sites/production/files/2014-10/documents/handbook-ch...
  3. Dwivedi A., Dubey S., Sillanpää M. et al.: Chem. Eng. J., 2015, 281, 713. https://doi.org/10.1016/j.cej.2015.07.004
  4. Hyder A., Begum S., Egiebor N.: J. Environ. Chem. Eng., 2015, 3, 1329. https://doi.org/10.1016/j.jece.2014.12.005
  5. Anoop Krishnan K., Sreejalekshmi K., Baiju R.: Bioresour. Technol., 2011, 102, 10239. https://doi.org/10.1016/j.biortech.2011.08.069
  6. Belova D., Lakshtanov L., Carneiro J., Stipp S.: J. Contam. Hydrol., 2014, 170, 1. https://doi.org/10.1016/j.jconhyd.2014.09.007
  7. Fouladgar M., Beheshti M., Sabzyan H.: J. Mol. Liq., 2015, 211, 1060. https://doi.org/10.1016/j.molliq.2015.08.029
  8. Li Y., Zhang J., Liu H.: Powder Technol., 2018, 325, 113. https://doi.org/10.1016/j.powtec.2017.10.051
  9. Abubeah R., Altaher H., Khalil T.: Environ. Eng. Manag. J., 2018, 17, 1621. https://doi.org/10.30638/eemj.2018.161
  10. Najafi F., Moradi O., Rajabi M. et al.: J. Mol. Liq., 2015, 208, 106. https://doi.org/10.1016/j.molliq.2015.04.033
  11. Hernández Rodiguez M., Yperman J., Carleer R. et al.: J. Environ. Chem. Eng., 2018, 6, 1161. https://doi.org/10.1016/j.jece.2017.12.045
  12. Xu M., Liu J., Hu K. et al.: Chinese J. Chem. Eng., 2016, 24, 1353. https://doi.org/10.1016/j.cjche.2016.05.028
  13. Long J., Gao X., Su M. et al.: Colloid Surface A, 2018, 548, 125. https://doi.org/10.1016/j.colsurfa.2018.03.040
  14. Altaher H.: Glob. Nest J., 2014, 16, 707. https://doi.org/10.30955/gnj.001385
  15. Khalil T., Altaher H., Abubeah R.: Environ. Eng. Manag. J., 2016, 15, 2719. https://doi.org/10.30638/eemj.2016.299
  16. Altaher H., Al-Oufi F., Magdy Y., Hassan M.: Yanbu J. Eng. Sci., 2015, 11, 29.
  17. Ebrahiem E., Altaher H., Abdelghany E., Magdy Y.: J. Hazard. Toxic Radioact. Waste, 2018, 22. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000401
  18. Altaher H., Dietrich A.: Water Sci. Technol., 2014, 69, 31. https://doi.org/10.2166/wst.2013.522
  19. Magdy Y., Altaher H.: J. Environ. Chem. Eng., 2018, 6, 834. https://doi.org/10.1016/j.jece.2018.01.009
  20. Altaher H., Khalil T., Abubeah R.: Color. Technol., 2014, 130, 205. https://doi.org/10.1111/cote.12086
  21. Ashour I., Altaher H., Sawalha F., Maraqah M.: Technol. Dev., 2015, 34, 16. https://doi.org/10.3923/std.2015.16.26
  22. Shah J., Rasul Jan M., Zeeshan M., Imran M.: Appl. Clay. Sci., 2017,143, 227. https://doi.org/10.1016/j.clay.2017.03.040
  23. Beshara A., Cheeseman C.: Waste Manag., 2014, 34, 1770. https://doi.org/10.1016/j.wasman.2014.04.021
  24. Magdy Y., Altaher H., Abdelghany E.: J. Mater. Environ. Sci., 2018, 9, 570. https://doi.org/10.26872/jmes.2018.9.2.63
  25. Magdy Y., Altaher H., ElQada E.: Appl. Water Sci., 2018, 8, 26. https://doi.org/10.1007/s13201-018-0666-1
  26. Rekunge D., Indalkar K., Chaturbhuj G.: Tetrahedron. Lett., 2016, 57, 5815. https://doi.org/10.1016/j.tetlet.2016.11.049
  27. List G.: Bleaching and Purifying Fats and Oils: Theory and Practice, 2nd edn. AOCS Publishing, New York 2010. https://doi.org/10.1201/b10513
  28. Bajpai A., Vishwakarma N.: Colloid Surface A, 2003, 220, 117. https://doi.org/10.1016/S0927-7757(03)00073-6
  29. Khalfaoui M., Knani S., Hachicha M., Lamine A.: J. Colloid Interface. Sci., 2003, 263, 350. https://doi.org/10.1016/S0021-9797(03)00139-5
  30. Roobottom H., Jenkins H., Passmore J., Glasser L.: J. Chem. Educ., 1999, 76, 1570. https://doi.org/10.3109/13880200903078495
  31. Flores López S., Moreno Virgen M., Hernández Montoya V. et al.: J. Mol. Liq., 2018, 269, 450. https://doi.org/10.1016/j.molliq.2018.08.063
  32. Bhattacharya A., Naiya T., Mandal S., Dasa S.: Chem. Eng. J., 2008, 137, 529.
  33. Parimal S., Prasad M., Bhaskar U.: Ind. Eng.Chem. Res., 2010, 49, 2882. https://doi.org/10.1021/ie9013343
  34. Fan C., Zhang Y.: J. Geochemical Explor., 2018, 188, 95. https://doi.org/10.1016/j.gexplo.2018.01.020
  35. Hamdaoui O.: J. Hazard. Mater., 2006, 135, 264. https://doi.org/10.1016/j.jhazmat.2005.11.062
  36. Podder M., Majumder C.: Compos. Interface., 2016, 23, 327. https://doi.org/10.1080/09276440.2016.1137715
  37. Whittaker P., Wang X., Regenauer-Lieb K., Chua H.T.: Phys. Chem. Chem. Phys., 2013, 15, 473. https://doi.org/10.1039/C2CP41756A
  38. Tzabar N., ter Brake H.: Adsorption, 2016, 22, 901. https://doi.org/10.1007/s10450-016-9794-9
  39. An Q., Jiang Y-Q., Nan H-Y. et al.: Chemosphere, 2019, 214, 846. https://doi.org/10.1016/j.chemosphere.2018.10.007
  40. Mathangi J., Sadeesh Sharma M., Mercy Jacquline B., Helen Kalavathy M.: Vacuum, 2018, 158, 236. https://doi.org/10.1016/j.vacuum.2018.09.056
  41. Ewecharoen A., Thiravetyan P., Wendel E., Bertagnolli H.: J. Hazard. Mater., 2009, 171, 335. https://doi.org/10.1016/j.jhazmat.2009.06.008
  42. He J., Shang H., Zhang X., Sun X.: Appl. Surf. Sci., 2018, 428, 110. https://doi.org/10.1016/j.apsusc.2017.09.123
  43. Lee C., Lee S., Park J. et al.: Chemosphere, 2017, 166, 203. https://doi.org/10.1016/j.chemosphere.2016.09.093
  44. Enniya I., Rghioui L., Jourani A.: Sustain. Chem. Pharm., 2018, 7, 9. https://doi.org/10.1016/j.scp.2017.11.003
  45. Bhatti I., Ahmad N., Iqbal N. et al.: J. Environ. Chem. Eng., 2017, 5, 2740. https://doi.org/10.1016/j.jece.2017.04.051
  46. Chagas P., de Carvalho L., Caetano A. et al.: J.Environ. Chem. Eng., 2018, 6,1008. https://doi.org/10.1016/j.jece.2018.01.026
  47. Choudhary B., Paul D.: J. Environ. Chem. Eng., 2018, 6, 2335. https://doi.org/10.1016/j.jece.2018.03.028
  48. Fathy N., El-Wakeel S., Abd El-Latif R.: J. Environ. Chem. Eng., 2015, 3,1137. https://doi.org/10.1016/j.jece.2015.04.011
  49. Gueye M., Richardson Y., Kafack F., Blin J.: J. Environ. Chem. Eng., 2014, 2, 273. https://doi.org/10.1016/j.jece.2015.04.011
  50. Liang F., Song Y., Huang C. et al.: J. Environ. Chem. Eng., 2013, 1, 1301. https://doi.org/10.1016/j.jece.2013.09.025
  51. Sreenivas K., Inarkar M., Gokhale S., Lele S.: J. Environ. Chem. Eng., 2014, 2, 455. https://doi.org/10.1016/j.jece.2014.01.017
  52. Wassie A., Srivastava V.: J. Environ. Chem. Eng., 2016, 4, 1117. https://doi.org/10.1016/j.jece.2016.01.019