Ізомеризація лінійного гексану на біметалічних цеолітних каталізаторах

2021;
: cc. 330–335
1
V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Sciences of Ukraine
2
V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Sciences of Ukraine
3
V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Sciences of Ukraine
4
V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Sciences of Ukraine
5
V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Sciences of Ukraine
6
V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Sciences of Ukraine
7
V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Sciences of Ukraine

Проведено оцінювання активності та селективності в ізомеризації н-гексану біметалічних цеолітних каталізаторів, що окрім паладію містять перехідний метал нікель. Синтезовано біметалічні біфункціональні каталізатори ізомеризації лінійних алканів на основі водневої форми цеоліту MFI. Пористі властивості зразків досліджено методом низькотемпературної адсорбції/десорбції азоту, розміри металічної компоненти – ТЕМ, а каталітичні властивості – у мікроімпульсній ізомеризації н-гексану. Знайдено антибатну залежність температури максимального виходу ізомерів гексану від кількості нікелю у зразку за сталого вмісту паладію. Показано, що введення нікелю дає можливість понизити оптимальну температуру процесу з 598 до 523 К.

  1. Hidalgo J., Zbuzek M., Cerny R., Jisa P.: Central Europ. J. Chem., 2013, 12, 1. https://doi.org/10.2478/s11532-013-0354-9
  2. Primo A., Garcia H.: Chem. Soc. Rev., 2014, 43, 7548. https://doi.org/10.1039/C3CS60394F
  3. Liu S., Ren J., Zhang H. et al.: J. Catal., 2016, 335, 11. https://doi.org/10.1016/j.jcat.2015.12.009
  4. Dhar A., Vekariya R., Sharma P.: Petroleum, 2017, 3, 489. https://doi.org/10.1016/j.petlm.2017.02.001
  5. Izutsu Y., Oku Y., Hidaka Y. et al.: Catal. Lett., 2013, 143, 486. https://doi.org/10.1007/s10562-013-0973-y
  6. Ghouri A., Usman M.: J. Chem. Soc. Pak., 2017, 39, 919.
  7. Dhar A., Vekariya R., Bhadja P.: Cogent Chemistry, 2018, 4, 1514686. https://doi.org/10.1080/23312009.2018.1514686
  8. Yoshioka C., Garetto T., Cardoso D.: Catal. Today, 2005, 107-108, 693. https://doi.org/10.1016/j.cattod.2005.07.056
  9. Jordao M., Simoes V., Cardoso D.: Appl. Catal. A-Gen., 2007, 319, 1. https://doi.org/10.1016/j.apcata.2006.09.039
  10. Lima P., Garetto T., Cavalcante C. et al.: Catal. Today, 2011, 172, 195. https://doi.org/10.1016/j.cattod.2011.02.031
  11. Martins G., dos Santos E., Rodrigues M. et al.: Modern Res. Catal., 2013, 2, 119. https://doi.org/10.4236/mrc.2013.24017
  12. Patrylak K., Patrylak L., Manza I., Taranookha O.: Petrol. Chem., 2001, 41, 383.
  13. Patrylak L., Krylova M., Pertko O. et al.: J. Porous Mater., 2019, 26, 861. https://doi.org/10.1007/s10934-018-0685-1
  14. Patrylak L., Likhnyovskyi R., Vypyraylenko V. et al.: Adsorpt. Sci. Technol., 2001, 19, 525. https://doi.org/10.1260/0263617011494376
  15. Rouquerol F., Rouquerol J., Sing K.: Adsorption by Powders and Porous solids. Principles, Methodology and Applications. Academic Press, San Diego 1999.
  16. Cychosz K., Guillet-Nicolas R., García-Martínez J., Thommes M.: Chem. Soc. Rev., 2017, 46, 389. https://doi.org/10.1039/C6CS00391E
  17. Thommes M.: Chemie Ingenieur Technik, 2010, 82, 1059. https://doi.org/10.1002/cite.201000064
  18. Hernández M., Rojas F., Lara V.: J. Porous Mater., 2000, 7, 443. https://doi.org/10.1023/A:1009662408173
  19. Sing S., Williams R.: Adsorpt. Sci. Technol., 2004, 22, 773. https://doi.org/10.1260/0263617053499032
  20. Wan W., Su J., Zou X., Willhammar T.: Inorg. Chem. Front., 2018, 5, 2836. https://doi.org/10.1039/C8QI00806J
  21. Juneau M., Liu R., Peng Y. et al.: Chem. Cat. Chem., 2020, 12, 1826. https://doi.org/10.1002/cctc.201902039
  22. Peron D., Zholobenko V., de la Rocha M. et al.: J. Mater. Sci., 2019, 54, 5399. https://doi.org/10.1007/s10853-018-03250-59
  23. Mazaheri O., Kalbasi R.: RSC Adv., 2015, 5, 34398. https://doi.org/10.1039/C5RA02349A
  24. Patrylak L., Krylova M., Pertko O. et al.: Chem. Chem. Technol., 2020, 14, 234. https://doi.org/10.23939/chcht14.02.234
  25. Voloshyna Yu., Pertko O., Krylova M. et al.: Kataliz ta Naftohimia, 2019, 28, 20. https://doi.org/10.15407/kataliz2019.28.020
  26. Voloshyna Yu., Pertko O., Patrylak L., Yakovenko A.: Voprosy Khimii і Khimicheskoi Technologii, 2020, 6, 26. https://doi.org/10.32434/0321-4095-2020-133-6-26-32
  27. Karakoulia S., Heracleous E., Lappas A.: Catal. Today, 2019, in press. https://doi.org/10.1016/j.cattod.2019.04.072
  28. Bhavani A., Pandurangan A.: J. Mol. Catal. A-Chem., 2007, 267, 209. https://doi.org/10.1016/j.molcata.2006.11.044
  29. Barsi F., Cardoso D.: Braz. J. Chem. Eng., 2009, 26, 353. https://doi.org/10.1590/S0104-66322009000200012
  30. Patrylak L., Manza I., Vypirailenko V. et al.: Theor. Experim. Chem., 2003, 39, 263. https://doi.org/10.1023/A:1025729530977