Activation and Characterization of Algerian Kaolinite, New and Green Catalyst for Synthesis of Polystyrene and Poly(1,3-dioxolane)

2021;
: pp. 551–558
1
Laboratoire de Chimie des Polymères, Département de Chimie, FSEA, Université Oran1 Ahmed Benbella
2
Oran1 University Ahmed Benbella, Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC)
3
Laboratoire de Chimie des Polymères, Département de Chimie, FSEA, Université Oran1 Ahmed Benbella, Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC)
4
Oran1 University Ahmed Benbella
5
Laboratoire de Chimie des Polymères, Département de Chimie, FSEA, University of Oran 1 Ahmed Benbella

In the present work we have explored a new catalyst prepared with Algerian clay and a new method to synthesise polystyrene and poly(1,3-dioxolane). This technique consists of using Algerian modified clay (Kaolinite-H+) as a green catalyst. Kaolinite-H+ is a proton exchanged clay which is prepared through a simple exchange process. Synthesis experiments are performed in bulk. The polymerization of styrene in bulk leads to the yield of 83 % at room temperature with the reaction time of 3 h. Molecular weight of the obtained polystyrene is calculated by 1H NMR and is about 2196 g/mol. Polymerization of (1,3-dioxolane) is carried out at room temperature with the reaction time of 3 h and polymerization yield of 91 %. The calculated molecular weight of the obtained poly(1,3-dioxolane) is about 573 g/mol. The structure of the obtained polymers is confirmed by FT-IR and 1H NMR. The modified clay (Kaolinite-H+) is characterized by FT-IR, XRD and SEM analysis.

  1. Vilela C., Sousa A., Fonseca A. et al.: Polym. Chem., 2014, 9. https://doi.org/10.1039/c3py01213a
  2. Huang X., Brittain W.: Macromolecules, 2001, 34, 3255. https://doi.org/10.1021/ma001670s
  3. Derdar H., Belbachir M., Hennaoui F. et al.: Polym. Sci. B, 2018, 60, 555 https://doi.org/10.1134/S1560090418050056
  4. Derdar H., Belbachir M., Harrane A.: Bull. Chem. React. Eng. Catal., 2019, 14, 69. https://doi.org/10.9767/bcrec.14.1.2692.69-78
  5. Haoue S., Derdar H., Belbachir M. et al.: Bull. Chem. React. Eng. Catal, 2020, 15, 221. https://doi.org/10.9767/bcrec.15.1.6297.221-230
  6. Varma R.: Tetrahydron, 2002, 58, 1235. https://doi.org/10.1016/S0040-4020(01)01216-9
  7. Cervantes R., Mayoral E.: Appl. Clay Sci., 2017, 143, 250. https://doi.org/10.1016/j.clay.2017.03.033
  8. Ray S., Okamoto M.: Prog. Polym. Sci., 2003, 28, 1539. https://doi.org/10.1016/j.progpolymsci.2003.08.002
  9. Thomas W., Wu L., Feng Y.: Soil Sci., 1978, 126, 15.
  10. Derdar H., Geoffrey R., Vidhura S. et al.: Polymers, 2020, 12, 1971. https://doi.org/10.3390/polym12091971
  11. Harrane A., Meghabar R., Belbachir M.: Int. J. Mol. Sci., 2002, 3, 790. https://doi.org/10.3390/i3070790
  12. Baghdadli M., Meghabar R., Belbachir M.: Asian J. Chem., 2016, 28, 1197. https://doi.org/10.14233/ajchem.2016.19139
  13. Meghabar R., Megherbi A., Belbachir M.: Polymer, 2003, 44, 4097. https://doi.org/10.1016/S0032-3861(03)00400-2
  14. Akeb M., Harrane A., Belbachir M.: Green Mater., 2018, 6, 58. https://doi.org/10.1680/jgrma.17.00040
  15. El-Kebir A., Harrane A., Belbachir M.: Arabian J. Sci. Eng., 2016, 41, 2179. https://doi.org/10.1007/s13369-015-1862-z
  16. Derdar H., Meghabar R., Benachour M. et al.: Polym. Sci. A, 2021, 63, 568. https://doi.org/10.1134/S0965545X21050023
  17. Sozer N., Kokini J.: Trends Biotechnol., 2009, 27, 82. https://doi.org/10.1007/s13197-012-0873-y
  18. Giannini L., Galimberti M., Citterio A., Cozzi D.: Chemistry of Rubber-Organoclay Nanocomposites [in]: Galimberti M. (Ed.), Rubber-Clay Nanocomposites: Science, Technology and Application. John Wiley and Sons 2011, p. 127-144. https://doi.org/10.1002/9781118092866.ch5
  19. Sukumar R., Menon A.: J. Appl. Polym. Sci., 2008, 107, 3476. https://doi.org/10.1002/app.27469
  20. Murray H.: Appl. Clay Sci., 2000, 17, 207. https://doi.org/10.1016/S0169-1317(00)00016-8
  21. Guo S., Zhang G., Wang J.: J. Colloid Interface Sci., 2014, 433, 1. https://doi.org/10.1016/j.jcis.2014.07.017
  22. Belver C., Muñoz M., Vicente M.: Chem. Mater., 2002, 14, 2033. https://doi.org/10.1021/cm0111736
  23. Solomon D., Swift J., Murphy A.: J. Macromol. Sci. A, 1971, 5, 587. https://doi.org/10.1080/00222337108061046
  24. Wang M., Huang P.: Appl. Clay Sci., 1989, 4, 43. https://doi.org/10.3390/polym10091002
  25. Zhao S.,, Qiu S., Zheng Y. et al.: Mater. Design, 2011, 32, 957. https://doi.org/10.1016/j.matdes.2010.07.020
  26. Hensen K., Mahaim C., Holderich W.: Appl.Catal. A, 1997, 149, 311. https://doi.org/10.1016/S0926-860X(96)00273-6
  27. Ouis N., Benharrats N., Belbachir M.: Comptes Rendus-Chimie, 2004, 7, 955. https://doi.org/10.1016/j.crci.2004.06.003
  28. Felhi M., Tlili A., Gaied M., Montacer M.: Appl. Clay Sci., 2008, 39, 208. https://doi.org/10.1016/j.clay.2007.06.004
  29. Chandrasekhar S., Ramaswamy S.: Appl. Clay Sci., 2007, 37, 32. https://doi.org/10.1016/j.clay.2006.11.007
  30. Oliveira M., Furtado S. et al.: An. Acad. Bras. Ciênc., 2007, 79, 665. https://doi.org/10.1590/S0001-37652007000400008
  31. Bobos J., Duplay J., Rocha J. et al.: Clays Clay Minerals, 2001, 49, 596. https://doi.org/10.1346/CCMN.2001.0490609
  32. Cicel B.: Carpath. Ser. Clays, 1992, 43, 3.
  33. Hernandez M.: Etude de mélanges ternaires époxyde/PMMA/montmorillonite. Élaboration, contrôle de la morphologie et des propriétés, thèse de doctorat, INSA de Lyon, 2007, p. 16-23.
  34. Bensaada N., Ayat M., Meghabar R., Belbachir M.: Curr. Chem. Lett., 2015, 4, 55. https://doi.org/10.5267/j.ccl.2015.3.002
  35. Belbachir M., Harrane A., Meghabar R.: Macromol. Symposia, 2006, 246, 1. https://doi.org/10.1002/masy.200651301
  36. Ayat M., Harrane A., Belbachir M.: Appl. Polym. Sci., 2008, 109, 1476. https://doi.org/10.1002/app.28285
  37. Yahiaoui A., Belbachir M.: Appl. Polym. Sci., 2006, 100, 1681. https://doi.org/10.1002/app.22946