Experimental Investigation and Multi-Gene Genetic Programming Simulation of Portland Clinker Burnability

2021;
: pp. 559–566
1
Chemical Engineering Department, Shahid Bahonar University of Kerman
2
Department of Chemical Engineering, College of Engineering, Shahid Bahonar University of Kerman
3
Department of Chemical Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman
4
Department of Chemical Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman

In this study, the effect of chemical composition of the raw material on the clinker burnability was studied by determination of free CaO (wt %) content of clinker. The burnability of two types of Portland clinker was investigated for silica modules of 2.3, 2.5 and 2.7 and lime saturation factor of 0.88–0.98. In addition, using the Multi-gene genetic programming (MGGP) model, the burnability of clinker was predicted. The results of MGGP model indicated that the performance of the model for predicting the amount of free CaO (wt %) was acceptable. Moreover, using MGGP, a promising correlation was introduced for accurately calculating the amount of free CaO (wt %). The performance of this correlation was compared with FL-Smidth, and it was established that the average errors of MGGP correlation and FL-Smidth equation were 2.95 and 7.45 %, respectively.

  1. Herfort D., Moir G., Johansen V. et al.: Adv. Cem. Res, 2010, 22, 187. https://doi.org/10.1680/adcr.2010.22.4.187
  2. Hokfors B., Viggh E., Bostrom D., Backman R.: Adv. Cem. Res, 2015, 27, 50. https://doi.org/10.1680/adcr.13.00071
  3. Frigione G., Zenone F., Esposito M.: Cem. Concr. Res, 1983, 13, 483. https://doi.org/10.1016/0008-8846(83)90006-6
  4. Stephan D., Maleki H., Knofel D. et al.: Cem. Concr. Res, 1999, 29, 545. https://doi.org/10.1016/S0008-8846(99)00009-5
  5. Chen Y., Shin P., Chiang L. et al.: J. Hazard. Mater, 2009, 170, 443. https://doi.org/10.1016/j.jhazmat.2009.04.076
  6. Kolovos K., Barafaka S., Kakali G., Tsivilis S.: Ceramics-Silikaty, 2005, 49, 205.
  7. Ifka T., Palou M., Bazelvo Z.: Ceram-Silikaty, 2012, 56, 76.
  8. Ract P., Espinosa D., Tenorio J.: Waste Manage., 2003, 23, 281. https://doi.org/10.1016/S0956-053X(02)00061-2
  9. Kakali G., Parissakis G., Bouras D.: Cem. Concr. Res, 1996, 26, 1473. https://doi.org/10.1016/0008-8846(96)00143-3
  10. Kolovos K., Tsivilis G., Kakali G.: Cem. Concr. Res, 2002, 32, 463. https://doi.org/10.1016/S0008-8846(01)00705-0
  11. Ma X., Chen H., Wang P.: Cem. Concr. Res, 2010, 40, 1681. https://doi.org/10.1016/j.cemconres.2010.08.009
  12. Altun I.: Cem. Concr. Res, 1999, 29, 1847. https://doi.org/10.1016/S0008-8846(99)00151-9
  13. Boughanmi S., Labidi I., Megriche A. et al.: Cem. Concr. Res, 2018, 105, 72. https://doi.org/10.1016/j.cemconres.2018.01.006
  14. Shang D., Wang M., Xia Z. et al.: Constr. Build. Mater., 2017, 146, 344. https://doi.org/10.1016/j.conbuildmat.2017.03.129
  15. Kolovos K., Tsivilis A., Kakali G.: J. Therm. Anal. Calorim., 2004, 77, 759. https://doi.org/10.1023/B:JTAN.0000041655.82776.09
  16. Zhao Y., Lu L., Wang S. et al.: J. Inorg. Organomet. P., 2013, 23, 930. https://doi.org/10.1007/s10904-013-9873-2
  17. Ghalandari V., Rafsanjani H.: Chem. Chem. Technol, 2019, 13, 205. https://doi.org/10.23939/chcht13.02.205
  18. Ghalandari V., Majd M., Golestanian A.: Energy, 2019, 173, 833. https://doi.org/10.1016/j.energy.2019.02.102
  19. Bagheri H., Mohebbi A.: Korean J. Chem. Eng, 2017, 34, 2686. https://doi.org/10.1007/s11814-017-0166-2
  20. Bagheri H., Ghader S.: Mol. Liq, 2017, 236, 172. https://doi.org/10.1016/j.molliq.2017.03.101
  21. Sheikhi-Kouhsar M., Bagheri H., Raeissi S.: Fluid Phase Equilibr., 2015, 395, 51. https://doi.org/10.1016/j.fluid.2015.03.005
  22. Bagheri H., Mansoori G., Hashemipour H.: J. Mol. Liq., 2018, 261, 174. https://doi.org/10.1016/j.molliq.2018.03.081
  23. Mohebbi A., Taheri M., Soltani A.: Int. J. Refrig., 2008, 31, 1317. https://doi.org/10.1016/j.ijrefrig.2008.04.008
  24. Bavdaz G., Kocijan J., Imeas T.: T. I. Meas. Control, 2007, 29, 17. https://doi.org/10.1177/0142331207070362
  25. Pani A., Vadlamudi V., Mohanta H.: ISA Transact., 2013, 52, 19. https://doi.org/10.1016/j.isatra.2012.07.004
  26. Kinnear Jr. K. (Ed.): Advances in Genetic Programming. MIT Press, Massachusetts 1994.
  27. Ghalandari V., Hashemipour H., Bagheri H: Fluid Phase Equilibr., 2020, 508, 112433. https://doi.org/10.1016/j.fluid.2019.112433
  28. Esmaeili H., Hashemipour H.: J. Mol. Liq., 2018, 272, 692. https://doi.org/10.1016/j.molliq.2018.10.011
  29. Alsop P.: The Cement Plant Operations Handbook : For Dry-Process Plants, 6th edn. Tradeship Publications Ltd. 2014.
  30. Alemayehu F., Sahu O.: Adv. Mater., 2013, 2, 23. https://doi.org/10.11648/j.am.20130202.12