Експериментальне дослідження і моделювання мультигенного генетичного программування спалювання портланд-клінкеру

2021;
: сс. 559–566
1
Chemical Engineering Department, Shahid Bahonar University of Kerman
2
Department of Chemical Engineering, College of Engineering, Shahid Bahonar University of Kerman
3
Department of Chemical Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman
4
Department of Chemical Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman

Вивчено вплив хімічного складу сировини на спалювання клінкеру внаслідок визначення вмісту вільного СаО (% мас.) клінкеру. Досліджено спалювання двох типів портланд-клінкеру з силікатним модулем 2,3, 2,5 та 2,7 та коефіцієнтом насичення вапном 0,88–0,98. З використанням моделі мультигенного генетичного програмування (MGGP), прогнозовано спалювання клінкеру. Показано, що модель MGGP є прийнятною для прогнозування кількості вільного СаО (% мас.), а для її точного розрахунку введено кореляцію. Величину кореляції порівняно з рівнянням FL-Smidth. Встановлено, що середні похибки кореляції MGGP та рівняння FL-Smidth були 2,95 та 7,45 % відповідно.

  1. Herfort D., Moir G., Johansen V. et al.: Adv. Cem. Res, 2010, 22, 187. https://doi.org/10.1680/adcr.2010.22.4.187
  2. Hokfors B., Viggh E., Bostrom D., Backman R.: Adv. Cem. Res, 2015, 27, 50. https://doi.org/10.1680/adcr.13.00071
  3. Frigione G., Zenone F., Esposito M.: Cem. Concr. Res, 1983, 13, 483. https://doi.org/10.1016/0008-8846(83)90006-6
  4. Stephan D., Maleki H., Knofel D. et al.: Cem. Concr. Res, 1999, 29, 545. https://doi.org/10.1016/S0008-8846(99)00009-5
  5. Chen Y., Shin P., Chiang L. et al.: J. Hazard. Mater, 2009, 170, 443. https://doi.org/10.1016/j.jhazmat.2009.04.076
  6. Kolovos K., Barafaka S., Kakali G., Tsivilis S.: Ceramics-Silikaty, 2005, 49, 205.
  7. Ifka T., Palou M., Bazelvo Z.: Ceram-Silikaty, 2012, 56, 76.
  8. Ract P., Espinosa D., Tenorio J.: Waste Manage., 2003, 23, 281. https://doi.org/10.1016/S0956-053X(02)00061-2
  9. Kakali G., Parissakis G., Bouras D.: Cem. Concr. Res, 1996, 26, 1473. https://doi.org/10.1016/0008-8846(96)00143-3
  10. Kolovos K., Tsivilis G., Kakali G.: Cem. Concr. Res, 2002, 32, 463. https://doi.org/10.1016/S0008-8846(01)00705-0
  11. Ma X., Chen H., Wang P.: Cem. Concr. Res, 2010, 40, 1681. https://doi.org/10.1016/j.cemconres.2010.08.009
  12. Altun I.: Cem. Concr. Res, 1999, 29, 1847. https://doi.org/10.1016/S0008-8846(99)00151-9
  13. Boughanmi S., Labidi I., Megriche A. et al.: Cem. Concr. Res, 2018, 105, 72. https://doi.org/10.1016/j.cemconres.2018.01.006
  14. Shang D., Wang M., Xia Z. et al.: Constr. Build. Mater., 2017, 146, 344. https://doi.org/10.1016/j.conbuildmat.2017.03.129
  15. Kolovos K., Tsivilis A., Kakali G.: J. Therm. Anal. Calorim., 2004, 77, 759. https://doi.org/10.1023/B:JTAN.0000041655.82776.09
  16. Zhao Y., Lu L., Wang S. et al.: J. Inorg. Organomet. P., 2013, 23, 930. https://doi.org/10.1007/s10904-013-9873-2
  17. Ghalandari V., Rafsanjani H.: Chem. Chem. Technol, 2019, 13, 205. https://doi.org/10.23939/chcht13.02.205
  18. Ghalandari V., Majd M., Golestanian A.: Energy, 2019, 173, 833. https://doi.org/10.1016/j.energy.2019.02.102
  19. Bagheri H., Mohebbi A.: Korean J. Chem. Eng, 2017, 34, 2686. https://doi.org/10.1007/s11814-017-0166-2
  20. Bagheri H., Ghader S.: Mol. Liq, 2017, 236, 172. https://doi.org/10.1016/j.molliq.2017.03.101
  21. Sheikhi-Kouhsar M., Bagheri H., Raeissi S.: Fluid Phase Equilibr., 2015, 395, 51. https://doi.org/10.1016/j.fluid.2015.03.005
  22. Bagheri H., Mansoori G., Hashemipour H.: J. Mol. Liq., 2018, 261, 174. https://doi.org/10.1016/j.molliq.2018.03.081
  23. Mohebbi A., Taheri M., Soltani A.: Int. J. Refrig., 2008, 31, 1317. https://doi.org/10.1016/j.ijrefrig.2008.04.008
  24. Bavdaz G., Kocijan J., Imeas T.: T. I. Meas. Control, 2007, 29, 17. https://doi.org/10.1177/0142331207070362
  25. Pani A., Vadlamudi V., Mohanta H.: ISA Transact., 2013, 52, 19. https://doi.org/10.1016/j.isatra.2012.07.004
  26. Kinnear Jr. K. (Ed.): Advances in Genetic Programming. MIT Press, Massachusetts 1994.
  27. Ghalandari V., Hashemipour H., Bagheri H: Fluid Phase Equilibr., 2020, 508, 112433. https://doi.org/10.1016/j.fluid.2019.112433
  28. Esmaeili H., Hashemipour H.: J. Mol. Liq., 2018, 272, 692. https://doi.org/10.1016/j.molliq.2018.10.011
  29. Alsop P.: The Cement Plant Operations Handbook : For Dry-Process Plants, 6th edn. Tradeship Publications Ltd. 2014.
  30. Alemayehu F., Sahu O.: Adv. Mater., 2013, 2, 23. https://doi.org/10.11648/j.am.20130202.12