Вплив наночастинок гідрофільного кремнезему на морфологію та механічні властивості компонентів типових шин

2022;
: cc. 150–158
1
Department of Chemical Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman
2
Department of Chemical Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman
3
Department of Chemical Engineering, College of Engineering, Shahid Bahonar University of Kerman
4
Compound Development Manager
5
Golnaz Vegetable Oil Co.

Вивчено вплив наночастинок гідрофільного кремнезему як нанонаповнювача на властивості протектора шин. Методом змішування розплаву виготовлено чотири сполуки, з кількістю нанонаповнювача 0, 1, 3 та 5 phr (частин наповнювача на сто частин гуми). Визначено фізико-механічні властивості одержаних сполук. За допомогою скануючої електронної мікроскопії з польовою емісією (Fe-SEM) встановлено структуру та морфологію поверхні. Доведено, що зразок, який містить 3 phr нанонаповнювача, має найкращі властивості. Це зумовлене вищою взаємодією між нанонаповнювачем та полімерними макромолекулами, що спричиняє кращу дисперсію наночастинок у полімерній матриці.

  1. Rajarao, R.; Farzana, R., Khanna R.; Sahajwalla, V. Synthesis of SiC/Si3N4 Nanocomposite by Using Automotive Waste Tyres as Resource. J. Ind. Eng. Chem. 2015, 29, 35-38. https://doi.org/10.1016/j.jiec.2015.04.006
  2. Tullo, A. Chemical Companies Hope Their Innovations Can Improve the Environmental Performance of Tires without Sacrificing Safety and Durability. Chem. Eng. News. 2009, 87, 10. https://doi.org/10.1021/cen-v087n046.p010
  3. Marković, G.; Radovanović, B.; Marinović-Cincović, M.; Budinski-Simendić, J. The Effect of Accelerators on Curing Characteristics and Properties of Natural Rubber/Chlorosulphonated Polyethylene Rubber Blend. Mater. Manuf. Process. 2009, 24, 1224-1228. https://doi.org/10.1080/10426910902967087
  4. Paul, D.; Robeson, L. Polymer Nanotechnology: Nanocomposites. Polymer. 2008, 49, 3187-3204. https://doi.org/10.1016/j.polymer.2008.04.017
  5. Chawla, V.; Prakash, S.; Sidhu B. State of the Art: Applications of Mechanically Alloyed Nanomaterials - A Review. Mater. Manuf. Process. 2007, 22, 469-473. https://doi.org/10.1080/10426910701235900
  6. Abdul Salim, Z.; Hassan, A.; Ismail, H. A Review on Hybrid Fillers in Rubber Composites. Polym. Plast. Technol. Eng. 2018, 57, 523-539. https://doi.org/10.1080/03602559.2017.1329432
  7. Bagheri, H.; Hashemipour, H.; Ghader, S. Population Balance Modeling: Application in Nanoparticle Formation Through Rapid Expansion of Supercritical Solution. Comput. Part. Mech. 2019, 6, 721-737. https://doi.org/10.1007/s40571-019-00257-w
  8. Bagheri, H.; Hashemipour, H.; Mirzaie, M. Investigation on Hydrodynamic and Formation of Nano Particle by RESS Process: The Numerical Study. J. Mol. Liq. 2019, 281, 490-505. https://doi.org/10.1016/j.molliq.2019.02.108
  9. Bagheri, H.; Mansoori, G.; Hashemipour, H. A Novel Approach to Predict Drugs Solubility in Supercritical Solvents for RESS Process Using Various Cubic Eos-Mixing Rule. J. Mol. Liq. 2018, 261, 174-188. https://doi.org/10.1016/j.molliq.2018.03.081
  10. Rubber Technologist's Handbook, Vol. 2; De, S.; Naskar, K.; White, J., Eds.; Smithers Rapra Technology: Shawbury, UK, 2009.
  11. Ahn, S.; Kim, S.; Kim, B. et al. Mechanical Properties of Silica Nanoparticle Reinforced Poly(ethylene2,6-naphthalate). Macromol. Res., 2004, 12, 293-302. https://doi.org/10.1007/BF03218403
  12. Ekengwu, I.; Utu, O.; Okafor, C. Nanotechnology in Automotive Industry: The Potential of Graphene. Iconic Res. Eng. J., 2019, 3, 31-37. https://irejournals.com/formatedpaper/1701322.pdf
  13. Vishvanathperumal, S.; Anand, G. Effect of Nanosilica and Crosslinking System on the Mechanical Properties and Swelling Resistance of EPDM/SBR Nanocomposites with and without TESPT. Silicon. 2020. https://doi.org/10.1007/s12633-020-00792-9
  14. White, J.; Kim, K. Thermoplastic and Rubber Compounds. Technology and Physical Chemistry; Hanser Publications: Ohio, 2012.
  15. Bhattacharya, M.; Bhowmick A. Synergy in Carbon Black-Filled Natural Rubber Nanocomposites. Part I: Mechanical, Dynamic Mechanical Properties, and Morphology. J. Mater. Sci. 2010, 45, 6126-6138. https://doi.org/10.1007/s10853-010-4699-6
  16. Ten Brinke, A. Silica Reinforced Tyre Rubbers. PhD thesis, University of Twente, the Netherlands, 2002.
  17. Kumbul, A.; Gokturk, E.; Sahmetlioglu, E. Synthesis, Characterization, Thermal Stability and Electrochemical Properties of Ortho-Imine-Functionalized Oligophenol via Enzymatic Oxidative Polycondensation. J. Polym. Res. 2016, 23, 52. https://doi.org/10.1007/s10965-016-0953-1
  18. Pal, K.; Rajasekar, R.; Kang, D. et al. Effect of Fillers on Natural Rubber/High Styrene Rubber Blends with Nano Silica: Morphology and Wear. Mater. Des. 2010, 31, 677-686. https://doi.org/10.1016/j.matdes.2009.08.014
  19. Kaewsakul, W. Silica-Reinforced Natural Rubber for Low Rolling Resistance, Energy-Saving Tires: Aspects of Mixing, Formulation and Compatibilization. PhD thesis, University of Twente, the Netherlands, 2013.
  20. Xia, L.; Song, J.; Wang, H.; Kan, Z. Silica Nanoparticles Reinforced Natural Rubber Latex Composites: The Effects of Silica Dimension and Polydispersity on Performance. J. Appl. Polym. Sci., 2019, 136, 47449. https://doi.org/10.1002/app.47449
  21. Tancharernrat, T.; Rempel, G.; Prasassarakich, P. Preparation of Styrene Butadiene Copolymer-Silica Nanocomposites via Differential Microemulsion Polymerization and NR/SBR-SiO2 Membranes for Pervaporation of Water-Ethanol Mixtures. Chem. Eng. J. 2014, 258, 290-300. https://doi.org/10.1016/j.cej.2014.05.151
  22. Rubber Nanocomposites: Preparation, Properties, and Applications; Thomas, S., Stephen, R., Eds.; John Wiley & Sons, 2010. https://doi.org/10.1002/9780470823477
  23. Park, S.; Jin, S.; Kaang, S. Influence of Thermal Treatment of Nano-Scaled Silica on Interfacial Adhesion Properties of the Silica/Rubber Compounding. Mater. Sci. Eng. A. 2005, 398, 137-141. https://doi.org/10.1016/j.msea.2005.03.012
  24. Chen, Y.; Peng, Z.; Kong, L. et al. Natural Rubber Nanocomposite Reinforced with Nano Silica. Polym. Eng. Sci. 2008, 48, 1674-1677. https://doi.org/10.1002/pen.20997
  25. Mathew, L.; Narayanankutty, S. Nanosilica as Dry Bonding System Component and as Reinforcement in Short Nylon-6 Fiber/Natural Rubber Composite. J. Appl. Polym. Sci. 2009, 112, 2203-2212. https://doi.org/10.1002/app.29718
  26. Meera, A.; Said, S.; Grohens, Y. et al. Tensile Stress Relaxation Studies of TiO2 and Nanosilica Filled Natural Rubber Composites. Ind. Eng. Chem. Res., 2009, 48, 3410-3416. https://doi.org/10.1021/ie801494s
  27. Chayan, D.; Kapgate Bharat, P. Preparation and Studies of Nitrile Rubber Nanocomposites with Silane Modified Silica Nanoparticles. Res. J. Recent Sci. 2012, 1, 357-360. http://www.isca.in/rjrs/archive/v1/iISC-2011/62.ISCA-ISC-2011-11MatS-05.pdf
  28. Yusof, N.; Noguchi, K.; Fukuhara, L. et al. Preparation and Properties of Natural Rubber with Filler Nanomatrix Structure. Colloid Polym. Sci. 2015, 293, 2249-2256. https://doi.org/10.1007/s00396-015-3615-7
  29. Ahmed, J.; Al-Maamori, M.; Ali, H. Effect of Nano Silica on the Mechanical Properties of Styrene-Butadiene Rubber (SBR) Composite. Int. J. Mater. Sci. Appl., 2015, 4, 15-20. https://doi.org/10.11648/j.ijmsa.s.2015040201.14
  30. Advanced Rubber Composites; Heinrich, G., Ed.; Springer Science & Business Media, 2011. https://doi.org/10.1007/978-3-642-19504-4
  31. Dileep, P.; Narayanankutty, S. Styrenated Phenol Modified Nanosilica for Improved Thermo-Oxidative and Mechanical Properties of Natural Rubber. Polym. Test., 2020, 82, 106302. https://doi.org/10.1016/j.polymertesting.2019.106302
  32. Dileep, P.; Narayanankutty, S. A Novel Method for Preparation of Nanosilica from Bamboo Leaves and Its Green Modification as a Multi-Functional Additive in Styrene Butadiene Rubber. Mater. Today Commun. 2020, 24, 100957. https://doi.org/10.1016/j.mtcomm.2020.100957
  33. Hawleyown, S. Physical Testing of Rubber-Third Edition: By R. P. Brown. Chapman and Hall, London, 1996. 352 pp. ISBN 0-412-60890-1. Polym. Test. 1996, 5, 501-502. https://doi.org/10.1016/0142-9418(96)00024-4
  34. Ramarad, S.; Khalid, M.; Ratnam, C. et al. Waste Tire Rubber in Polymer Blends: a Review on the Evolution, Properties and Future. Prog. Mater. Sci. 2015, 72, 100-140. https://doi.org/10.1016/j.pmatsci.2015.02.004