Optimization of epoxidation by using response surface methodology (RSM) based on three-level three-factorial central composite design (CCD) was used. Response percentage of relative oxirane content (%RCO) was studied to determine the optimum reaction condition for production of polyols. The predicted value of model (85 %) was excellent in accordance to experimental value (81 %). All parameters (temperature, molar ratio of formic acid to oleic acid and molar ratio of hydrogen peroxide to oleic acid) were significant in influencing the course of epoxidation reaction (p < 0.05). The interaction between all parameters is also highly significant with p < 0.0001. Optimum reaction conditions obtained from RSM were as follows: the temperature 318 K, molar ratio of formic acid to oleic acid 1.64:1 and molar ratio of hydrogen peroxide to oleic acid 2:1. The epoxidation of palm oleic acid was carried out by using in situ performic acid. FTIR analysis showed the formation of epoxy functional groups at optimum reaction condition at the wavelength of 1340 cm-1. This epoxide group was used to produce polyols by using hydroxylation process and the polyols functional group was detected at the wavelength of 816 cm-1
- Taude, Saurabh; Patnaik, M.; Bhagt, S.L.; Renge, V.C. Epoxidation of Vegetable Oils: A Review. Int. J. Adv. Eng. Technol. 2011, II, 491-501.
- Bauman, Z.A. Natural History of Evil; Polity Press, 2011.
- Hong, L.K.; Yusop, R.M.; Salih, N.; Salimon, J. Optimization of the in-situ Epoxidation of Linoleic Acid of Jatropha Curcas Oil with Performic Acid. Malaysian J. Anal. Sci. 2015, 19, 144-154.
- Lu, H.; Sun, S.; Bi, Y.; Yang, G. Enzymatic Epoxidation of Biodiesel Optimized by Response Surface Methodology. African J. Biotechnol. 2012, 11, 12356-12363. https://doi.org/10.5897/AJB11.3831
- Khoon Poh, A.; Choy Sin, L.; Sit Foon, C.; Cheng Hock, C. Polyurethane Wood Adhesive from Palm Oil-Based Polyester Polyol. J. Adh. Sci. Technol. 2014, 28, 1020-1033. https://doi.org/10.1080/01694243.2014.883772
- Hatchett, D.W., Kodippili, G., Kinyanjui, J.M.; Benincasa, F.; Sapochak, L. FTIR Analysis of Thermally Processed PU Foam. Polym. Degrad. Stab. 2005, 87, 555-561. https://doi.org/10.1016/j.polymdegradstab.2004.10.012
- Alagi, P.; Ghorpade, R.; Jang, J.H.; Patil, C.; Jirimali, H.; Gite V.; Hong, S.C. Functional Soybean Oil-Based Polyols as Sustainable Feedstocks for Polyurethane Coatings. Ind. Crops Prod. 2018, 113, 249-258. https://doi.org/10.1016/j.indcrop.2018.01.041
- Boustead, I. Eco-profiles of the European Plastics Industry: Polyether Polyol.; a Report for Plastics Europe; PlasticsEurope: Brussels, March 2005.
- Santacesaria, E.; Tesser, R.; Di Serio, M.; Turco, R.; Russo, V.; Verde, D. A biphasic Model Describing Soybean Oil Epoxidation with H2O2 in a Fed-Batch Reactor. Chem. Eng. J. 2011, 173, 198-209. https://doi.org/10.1016/j.cej.2011.05.018
- Jalil, M.J.; Mohamed, N.; Jamaludin, S.K.; Som, A.M.; Mohamad Daud, A.R. Epoxidation of Palm Kernel Oil-Based Crude Oleic Acid. Adv. Mater. Res. 2014, 906, 125-130. https://doi.org/10.4028/www.scientific.net/AMR.906.125
- Derawi, D.; Salimon, J. Optimization on Epoxidation of Palm Olein by Using Performic Acid. J. Chem. 2010, 7, Article ID 384948. https://doi.org/10.1155/2010/384948
- Rama Rao, S., Padmanabhan, G. Application of Taguchi Methods and ANOVA in Optimization of Process Parameters for Metal Removal Rate in Electrochemical Machining of Al/5%SiC Composites. Int. J. Eng. Res. 2012, 2, 192-197.
- Amini, M.; Younesi, H.; Bahramifar, N.; Zinatizadeh, A.A.; Ghorbani F.; Daneshi, A.; Sharifzadeh, M. Application of Response Surface Methodology for Optimization of Lead Biosorption in an Aqueous Solution by Aspergillus Niger. J. Hazard. Mater. 2008, 154, 694-702. https://doi.org/10.1016/j.jhazmat.2007.10.114
- Kim, H.K.; Kim J.G.; Cho J.D.; Hong J.W. Optimization and Characterization of UV-Curable Adhesives for Optical Communications by Response Surface Methodology. Polym. Test. 2003, 22, 899-906. https://doi.org/10.1016/S0142-9418(03)00038-2
- Muthukumar, M.; Mohan, D.; Rajendran, M. Optimization of Mix Proportions of Mineral Aggregates Using Box Behnken Design of Experiments. Cem. Concr. Compos. 2003, 25, 751-758. https://doi.org/10.1016/S0958-9465(02)00116-6
- Dinda, S.; Patwardhan, A.V.; Goud, V.V.; Pradhan, N.C. Epoxidation of Cottonseed Oil by Aqueous Hydrogen Peroxide Catalysed by Liquid Inorganic Acids. Biores. Technol. 2008, 99, 3737-3744. https://doi.org/10.1016/j.biortech.2007.07.015
- Lee, P.L.; Wan Yunus, W.M.Z.; Yeong, S.K.; Dzulkefly Kuang, A.; Lim, W.H. Optimization of The Epoxidation of Methyl Ester of Palm Fatty Acid Distillate. J. Oil Palm Res. 2009, 21, 675-682.
- Derouet D. and Brosse J.: Comparative Study of The Epoxidation of Natural and Synthetic Rubber Latices. J. Rubb. Res., 2006, 9 (1), 1-20.
- Statistik Indonesia 2014; Katalog BPS, Vol. XXXIII, No.2, pp 81-87.
- Mushtaq, M.; Tan, I.M.; Nadeem, M.; Devi, C.; Lee, S.Y.C.; Sagir M.; Rashid, U. Epoxidation of Methyl Esters Derived from Jatropha Oil: An Optimization Study. Grasas y Aceites, 2013, 64, 103-114. https://doi.org/10.3989/gya.084612
- Fong, M.N.F.; Salimon, J. Epoxidation of Palm Kernel Oil Fatty Acids. J. Sci. Technol. 2012, 4, 87-98. Retrieved from https://penerbit.uthm.edu.my/ojs/index.php/JST/article/view/605
- Jalil, M.J.; Jamaludin, S.K; Rafizan, A.; Daud M. Degradation Oxirane Ring Kinetics of Epoxidized Palm Kernel Oil-Based Crude Oleic Acid. Chem. Chem. Technol., 2018, 12, 296-299. https://doi.org/10.23939/chcht12.03.296