Studying the Effect of Butanol on the Anode Behavior of Copper in Phosphoric Acid Solutions

: pp. 103–111
National Technical University “Kharkiv Polytechnic Institute”
National University of Civil Defence of Ukraine
National Technical University “Kharkiv Polytechnic Institute”
National Technical University “Kharkiv Polytechnic Institute”
Simon Kuznets Kharkiv National University of Economics
O.M.Beketov National University of Urban Economy in Kharkiv

The anode behavior of the copper electrode immersed in butanol phosphate electrolytes has been studied. The polarization dependences of the electrode allowed us to detect the sections that correspond to the passive and active states of copper and we also established the zone of the combined behavior of the processes of the copper dissolution and oxygen release. It was also established that a butyl alcohol contributes to an abrupt decrease in current densities in the entire region of anode potentials. The addition of butanol conditions the disappearance of current oscillations that can be seen on polarization dependences in phosphate solutions. Evidently, a decrease in the current densities is a consequence of the butanol adsorption on the copper surface and its participation in the formation of passive films. The specific features of the copper passivation in butanol phosphate electrolytes are characterized by the appearance of the explicit current peak that separates active and passive state zones at the ratio of C4H9OН:H3PO4 =1:3. As the alcohol-to-acid ratio increases, the peak gradually decreases. The addition of butanol has no determining influence on the potential value that corresponds to the started oxygen release. Currentefficiency values for the copper dissolution depend on the anode current density ja and the electrolyte composition. An increase in ja results in a decreased current efficiency value. An increase in the С4Н9ОН content has a similar action. Maximum current efficiency values are observed at ja=0.5–2 А∙dm-2, and they correspond to the active copper state. The dependences obtained for the copper dissolution rate allowed us to establish that υрalso increases with an increase in the current density up to  ja=20 А∙dm-2. The copper treatment quality depends on the current density and the electrolyte composition. The solutions with the ratio of C4H9OН:H3PO4=2:1 fail to provide a high quality treatment; the surface is not glossy and it has grinding traces. A high-quality treatment is observed in the electrolytes with the ratio of C4H9OН:H3PO4 =1:2 and lower. The electrochemical polishing in such solutions results in the glossy copper surface with the smoothed relief and it has no polishing traces.

  1. Yang,G.;Wang,B.;Tawfiq,K.; Wei, H.; Zhou, S.; Chen, G. ElectropolishingofSurfaces: TheoryandApplications.Surf. Eng. 2017, 33, 149-166.
  2. Abdel-Fattah,T.M.;Loftis,J.D. ComparisonoftheElectrochemicalPolishingofCopperandAluminuminAcidandAcid-freeMedia.ECSTrans.2009, 25, 327-334.
  3. Chatterjee, B.Science and Industry of Electropolishing.Galvanotechnik2015, 71, 71-93.
  4. Rotty,C.;Mandroyan,A.;Doche,M.-L.;Hihn, J.-Y.Electropolishing of CuZn Brasses and 316L Stainless Steels: Influence of Alloy Composition or PReparation Process (ALM vs. Standard Method).Surf.Coat. Techn. 2016, 307, 125-135.
  5. Wu, D.; Kang, R.; Guo, J.; Liu, Z.; Wan, C.;Jin, Z.On theReactionMechanismof a HydroxyethylideneDiphosphonicAcid-BasedElectrolyteforElectrochemicalMechanicalPolishingofCopper.Electrochem. Commun. 2019, 103, 48-54.
  6. Rokicki, R.;Hryniewicz, T.Enhanced Oxidation-Dissolution Theory of Electropolishing.Trans. Inst. Met. Finish. 2012, 90, 188-196.
  7. Li, D.; Li, N.; Xia, G.;Zheng, Z.; , Wang, J.; Xiao, N.;Zhai, W.; Wu, G. An in-situ Study of Copper Electropolishing in Phosphoric AcidSolution.Int. J. Electrochem. Sci. 2013, 8, 1041-1046.
  8. Smirnova, O.;Pilipenko, A.;Pancheva, H.;Smirnova, O.;Pilipenko, A.;Pancheva, H.;Zhelavskyi, A.;Rutkovska, K.Study of Anode ProcessesDuringDevelopment of the New ComplexThiocarbamide­CitrateCopper PlatingElectrolyte.EEJET2018, 1, 47-51.
  9. Jacquet, P.A.On the Anodic Behavior of Copper in Aqueous Solutions of Orthophosphoric Acid.Trans. Electrochem Soc.1936,69, 629-656.
  10. Patil, Y.;Dulange, S.R. A Review on Electropolishing Process and its Affecting Parameters International.IJARSE2014, 3, 246-252.
  11. Elmalah,N.M.; AbdElhaliem, S.M.; Ahmed, A.M.;Ghozy, S.M.Effect of Some Organic Aldehydes on the Electropolishing of Copper in Phosphoric Acid.Int. J. Electrochem. Sci. 2012, 7, 7720-7739.
  12. L,i D.; Li, N.; Xia, G.;Xiao N.; Zheng, Z.;Zhai, W.; Wu, G. Effect of Sodium Dodecyl Sulfate on Copper Anodic Dissolution in Phosphoric Acid Solution.Int. J. Electrochem. Sci. 2012, 7, 9271-9277.
  13. Huo, J.; Solanki, R.; McAndrew, J.ElectrochemicalPolishingofCopperforMicroelectronicApplications.Surf. Eng.2003, 19, 11-16.
  14. Ahmed, A.M.;Abd El-Haleem, S.M.; Saleh, M.G.A.;Abdel-Rahman,A.A.-H. Cooper Electropolishing in the Presence of Purine Derivatives.Asian J. Chem.2013, 25, 1512-1520.
  15. Taha, A.A.; Ahmed, A.M.; Abdel Rahman, H.H.;Abouzeid, F.M. The Effect of Surfactants on the Electropolishing Behavior of Copper in Orthophosphoric Acid.Appl. Surf. Sci.2013, 277, 155-166.
  16. Batouti, M.E.; Ahmed, A.-M.M:Study of Electrochemical Behavior of Copper in Presenceof Dicarboxylic and Tricarboxylic Acids.Rev. Roum. Chim.2015, 60, 1047-1058.
  17. Liu S.-H., Shieh J.-M, Chen C.;Hensen, K.; Cheng, S.-S. Roles of Additives in Damascene Copper Electropolishing.J. Electrochem. Soc.2006, 153, C428-C433.
  18. Mounir, F.;Issami El, S.;Bazz,iLh.;Salghi,R.;Bammou, L.;Bazzi, L.;Chihab Eddine, A.;Jbara, O.Copper Corrosion Behavior in Phosphoric AcidContaining Chloride and its Inhibition by Artemisia Oil.IJRRAS2012, 13, 574-587.
  19. Pircher, E.;Martínez, M.R.;Hansal, S.;Hansal, W.Electropolishing of Copper Alloys in Phosphoric Acid Solutions with Alcohols.Plating Surf. Finishing2003, 90, 74-79.
  20. Taha A.A.;Sallam S.A.; Ahmed A.M. Corrosion of Copper in Phosphoric Acid‐Ethanol Mixture.Anti-Corros.Method. M.1994, 41, 10-16.
  21. Attia, A.A.;Elmelegy, E.M.;Batouti, M.E.; Ahmed, A.-M.M. Studying Copper Electropolishing Inhibition in Presence ofSomeOrganicAlcohols.Port. Electrochim. Acta2016, 34, 105-118.
  22. Zhao, J.;Kunieda, M.; Yang, G.;Yuan, X.-M. Effects of Electrolyte Formulas on Electrochemical Polish Planarization of Pure Copper.Key Eng. Mat.2010, 447-448, 159-163.
  23. Awad, A.M.;Ghany, N.A.A.;Dahy, T.M. Removal of Tarnishing and Roughness of Copper Surface by Electropolishing Treatment.Appl. Surf. Sci.2010, 256, 4370.
  24. Abdel-Haleem, S.M.; Ahmed, A.M.;Shadad, M.I.Kinetic Study of Anodic Corrosion of Copper in Phosphoric Acid and Effects of Some Phenols Derivatives.Asian J. Chem.2013, 25, 9693-9700.
  25. Du, B.; Suni, I.I. Mechanistic Studies of Cu Electropolishing in Phosphoric Acid ElectrolytesюJ. Electrochem. Soc.2004, 151, C375-C378.
  26. Silchenko, D.;Pilipenko, A.;Pancheva, H.;Khrystych, O.;Chyrkina, M.; Semenov, E.Establishing the Patterns in Anode Behavior of Copper in Phosphoric Acid Solutions when Adding Alcohols.EEJET2018, 4, 35-41.
  27. Ding,L.; Wu, P.; Cheng, J.; Niu, Y.; Song, Z.; Kong, X. Electrochemical Oscillations during Electro-oxidation of Copper Anode in Phosphoric Acid Solution.Electrochemistry (Tokyo)2019,87, 14-19.
  28. Demeev, B.B.;Dauletbay, A.;Nauryzbaiev, M.K. The Effect of Organic Surface-Active Additives Upon theKinetics of Electrodeposition of Ultrafine Copper Powder.Chem. Eng. Trans.2016, 47, 211-216.
  29. Kwon, G.D.; Kim, Y.W.; Moyen, E.;Keum, D.H.;Lee, Y.H.;Baik, S.;Pribat, D. ControlledElectropolishing of Copper Foils atElevatedTemperature.Appl. Surf. Sci.2014, 307, 731-735.
  30. Elmalah, N.M.;Elhaliem, S.M.A.; Ahmed A.M.;Ghozy S.M.Effect of Some Organic Aldehydes on the Electropolishing of Copper in Phosphoric Acid.Int. J. Electrochem. Sci.2012, 7, 7720-7739.
  31. Li, D.; Li, N.; Xia, G.; Zheng, Z.; Wang, J.; Xiao, N.;Zhai, W.; Wu, G.An in-situ Study of Copper Electropolishing in Phosphoric Acid Solution.Int. J. Electrochem. Sci. 2013, 8, 1041-1046.
  32. Smirnova, O.;Brovin, A.;Pilipenko, A.;Zhelavska, Yu.Studying the Kinetics of Electrode Reactions on Copper, Silver and Gold in Acid Thiourea-Citrate Electrolytes.Mater.Today Proceed.2019, 6, 141-149.
  33. Sincheskul, A.;Pancheva, H.;Loboichenko, V.; Avina, S.;Khrystych, O.; Pilipenko, A.Design of the Modified Oxide-Nickel Electrode withImprovedElectricalCharacteristics.EEJET2017, 5, 23-28.
  34. Ahmed, A.-M.M.;Batouti, M.E.;Khelil, S.M.S.Electropolishing of Metallic Surfaces and the FactorsInfluencing on the LimitingCurrent.Port. Electrochim. Acta2015, 33, 105-110.