Studying the Insulating Properties of Oxide Films Obtained on the Ti6A14V Alloy in Tartaric Acid Solutions Using the Method of Electrochemical Decoration by Copper

: pp. 526–535
O.M.Beketov National University of Urban Economy in Kharkiv
National Technical University “Kharkiv Polytechnic Institute”
National University of Civil Defense of Ukraine
National University of Civil Defense of Ukraine

The investigation data of the formation peculiarities of oxide films on the Ti6A14V alloy in tartaric acid solutions have been given. It is shown that the behavior of alloy forming dependences is conditioned by the anode current density. At ja < 0.5 A∙dm-2 the continuous oxide film is not formed on the alloy surface and the preset value of the final voltage on the cell is not reached. With an increase in ja > 0.5 A∙dm-2, alloy forming dependences show a linear behavior that is indicative of the formation of low porous films. In these conditions, the oxide film formation rate is in direct proportion to the value of ja. The electrochemical oxidation of Ti6A14V alloy in tartaric acid solutions results in the formation of interference-colored oxide films. The oxide film ultimate thickness and color are defined by the preset voltage and are independent of the current density and electrolyte concentration. The isolating properties of obtained films were studied by the way of the cathode polarization of oxidized specimens in the sulfate copper-plating electrolyte. The research done allows us to make a conclusion that electrochemical copper deposition is a convenient tool for the detection of defective spots in oxide films. It is shown that due to the specific features of the reduction kinetics of Cu2+ ions on the oxidized titanium it is reasonable to use for the studies the initial sections of polarization dependences that correspond to ΔE = 0.2–0.25 V. The alloy polarization dependences allow us to establish unavailability of apparent dependences between the oxidation current density, the electrolyte concentration, the cell final voltage value and the polarization that occurs during the Cu2+ ion reduction. The anodic connection of copper-coated specimens conditions the reversible dissolution of a greater portion of the specks of copper deposits. It is indicative of the electron conduction of film defects. The obtained data allow us to vary the electrolysis parameters in a wide range with no significant influence of the treatment mode of Ti6A14V alloy on the quality of oxide coatings.

  1. Chouirfa H., Bouloussa H., Migonney V. et al.: Acta Biomat., 2018, 83, 37.
  2. Jorge J., Barão V., Delben J. et al.: J. Indian Prosthodont. Soc., 2013, 13, 71.
  3. Adya N., Alam M., Ravindranath T. et al.: J. Indian Prosthodont. Soc., 2005, 5, 126.
  4. Gugelmina S., Santosa L., Ponteb H. et al.: Mater. Res., 2015, 18, 3.
  5. Liu Z., Zhong X., Walton J. et al.: J. Electrochem. Soc., 2016, 163, E75.
  6. Langklotz U., Noeske M., Schneider M.: Mater. Corros., 2018, 69, 1810160.
  7. Diamanti M., Ormellese M., Pedeferri M.: J. Exp. Nanosci., 2015, 10, 1285.
  8. Arsov L., Mickova I.: J. Electrochem. Sci. Eng., 2015, 5, 221.
  9. Lamberti A.: Nanomaterials, 2018, 8, 325.
  10. Pilipenko A., Pancheva H., Deineka V. et al.: EEJET, 2018, 3, 33.
  11. Ivashchenko M., Smirnova O., Kyselova S. et al.: EEJET, 2018, 5, 21.
  12. Concha O., Castañeda I., Guardian R. et al.: Int. J. Electrochem. Sci., 2015, 10, 6175.
  13. Benea L., Răvoiu A., Celis J.-P.: Biomater. Sci. Eng., 2019, 5, 5925.
  14. Liu C.-F., Lee T.-H., Liu J.-F. et al.: Sci. Rep., 2018, 8, 6623.
  15. Rodrigues A., Oliveira N., Santos M.: J. Mater. Sci.-Mater. M., 2015, 26, 1.
  16. Jimenez Cadena G., Eyraud M., Chassigneux C. et al.: Int. J. Nanotechnol, 2012, 9, 3.
  17. Su Z., Zhang L., Jiang F. et al.: Prog. Nat. Sci.-Mater. Int., 2013, 23, 294.
  18. Yang G., Ma D., Liu L. et al.: Chem. Eng. Trans., 2017, 59, 157.
  19.  Assisa S., Wolynec S., Costa I.: Electrochimica Acta, 2006, 51, 1815.
  20. Bouchemel H., Benchettara A.: Arab. J. Sci. Eng., 2014, 39, 139.
  21. Fekry A., El-Sherif R.: Electrochimica Acta, 2009, 54, 7280.
  22. Kumar S., Narayanan T.: J. Dentistry, 2008, 36, 500.
  23. Li J., Li S. J., Hao Y. L. et al.: Acta Biomater., 2014, 10, 2866.
  24. Liu Z., Liu X., Donatus U., Thompson G.E. et al.: Int. J. Electrochem. Sci., 2014, 9, 3558.
  25. Milošev I., Blejan D., Varvara S. et al.: J. Appl. Electrochem., 2013, 43, 645.
  26. Rosalbino F., Macciò D., Scavino G. et al.: J. Mat. Sci.-Mater. M., 2012, 23, 865.
  27. Sazou D., Saltidou K., Pagitsas M.: Electrochimica Acta, 2012, 76, 48.
  28. Wang J., Wang W., Wang C. et al.: Int. J. Hydr. Energy, 2012, 37, 12069.
  29. Wu L., Liu J., Yu M. et al.: Int. J. Electrochem. Sci., 2014, 9, 5012.
  30. Łępicka M., Grądzka-Dahlke M., Sobolewski A.: Materialprufung, 2015, 57, 393.
  31. Singh A., Singh B., Wani M. et al.: Bull. Mat. Sci., 2013, 36, 931.
  32. Shevchenko G., Pilipenko A., Shkolnikova T. et al.: Proceed. 2020 IEEE 40th International Conference on Electronics and Nanotechnology (ELNANO), Ukraine, Kyiv 2020, 216.
  33. Kahar Mr., Macwan A., Oza Ms. et al.: Int. J. Eng. Res. Appl., 2013, 3, 441.
  34. Aladjem A.: J. Mater. Sci., 1973, 8, 688.
  35. Chang H., Choe B.-H., Lee J.: Mat. Sci. Eng. A, 2005, 409, 317.
  36. Pancheva H., Reznichenko G., Miroshnichenko N. et al.: EEJET, 2017, 4, 59.
  37. Pilipenko A., Maizelis A., Pancheva H. et al.: Chem. Chem. Technol., 2020, 14, 221.
  38. Pilipenko A., Pancheva H., Reznichenko G. et al.: EEJET, 2017, 1, 21.
  39. Diao R., Rong J., Wang X. et al.: Int. J. Electrochem. Sci., 2018, 13, 7765.
  40. Silchenko D., Pilipenko A., Pancheva H. et al.: EEJET, 2018, 4, 35.
  41. Aarão Reis F.: Condens. Matter Phys., 2017, 20, 1.