Improved Method for Determining Microbiological Contamination of Fatty Acid Methyl Esters and Blended Diesel Fuels

2023;
: pp. 203 - 210
1
SHEI Ukrainian State University of Chemical Technology
2
SHEI Ukrainian State University of Chemical Technology

The process of degradation of biodiesel of vegetable origin (rapeseed and sunflower) under the influence of various factors is considered. Existing methods of determining microbiological contamination of substances are analyzed, their main advantages, disadvantages, and limits of use are determined. Based on the combination of existing methods, a method of qualitative and quantitative determination of the degree of microbiological (bacterial and mycological) damage to fuels has been developed. Quantitative and qualitative characteristics of microbiological damage to traditional and alternative diesel fuels have been established. The microorganisms that are the most active destructors of biofuels have been identified.

  1. Patrylak, L.; Patrylak, K.; Okhrimenko, M.; Zubenko, S.; Levterov, A.; Savytskyi, V. Comparison of Power-Ecological Characteristics of Diesel Engine Work on Mixed Diesel Fuels on the Basis of Ethyl Esters of Rapeseed and Sunflower Oils. Chem. Chem. Technol. 2015, 9, 383−390. https://doi.org/10.23939/chcht09.03.383
  2. Maymuchar; Wirahadi, D.; Faturrahman, N.A.; Febria, M.; Hanifuddin, M.; Aisyah, L.; Supriadi, F.; Bethari, S.A.; Karina, R.M.; Rulianto, D. et al. The Effect Characteristics Cetane Number of Commercial High-Speed Diesel Fuel-Biodiesel Palm Oil-Based Blends on CFR engine. IOP Conference Series: Earth and Envi-ronmental Science 2022, 1034, 012044. https://doi.org/10.1088/1755-1315/1034/1/012044
  3. Wu, G.; Ge, J.C.; Choi, N.J. A Comprehensive Review of the Application Characteristics of Biodiesel Blends in Diesel Engines. Appl. Sci. 2020, 10, 8015. https://doi.org/10.3390/app10228015
  4. Sorate, K.A.; Bhale, P.V. Biodiesel Properties and Automo-tive System Compatibility Issues. Renew. Sust. Energ. Rev. 2015, 41, 777−798. https://doi.org/10.1016/j.rser.2014.08.079
  5. Passman, F.J. Microbial Contamination and its Control in Fuels and Fuel Systems Since 1980 - A Review. Int. Biodeterior. Biodegradation 2013, 81, 88-104. https://doi.org/10.1016/j.ibiod.2012.08.002
  6. Matveeva, E.; Vasylchenko, A.; Demianko, D. Mikrobiolohi-cheskoe porazhenie aviatsionnykh topliv. Systemy ozbroiennia i viiskova tekhnikа 2011, 26, 152−156.
  7. Shkilniuk, І. Books of Abstracts, 1st International Symposium on Sustainable Aviation, Istanbul, Turkey, 31 May-3 June 2015.
  8. Onuorah, S.; Obika, I.; Orji, M.; Odibo, F. Microbial Conta-minants in the Commercial Aviation Fuel Obtained from Benin City Airport, Nigeria. Univers. J. Microbiol. Res. 2015, 3, 31−35. https://doi.org/10.13189/UJMR.2015.030301
  9. Lugauskas, A.; Prosychevas, I.; Levinskaitė, L.; Jaskelevičius, B. Physical and Chemical Aspects of Long-Term Biodeterioration of Some Polymers and Composites. Environ. Toxicol. 2004, 19, 318-328. https://doi.org/10.1002/tox.20028
  10. Rauch, M.E.: Graef, H.W.; Rozenzhak, S.M.; Jones, S.E.; Bleckmann, C.A.; Kruger, R.L.; Naik, R.R.; Stone, M.O.
  11. Characterization of Microbial Contamination in United States Air Force Aviation Fuel Tanks. J. Ind. Microbiol. Biotechnol. 2006, 33, 29-36. https://doi.org/10.1007/s10295-005-0023-x
  12. Abbasian, F.; Lockington, R.; Mallavarapu, M.; Naidu, R. A Comprehensive Review of Aliphatic Hydrocarbon Biodegradation by Bacteria. Appl. Biochem. Biotechnol. 2015, 176, 670-699. https://doi.org/10.1007/s12010-015-1603-5
  13. Imron, M.F., Kurniawan, S.B., Titah, H.S. Potential of Bacteria Isolated from Diesel-Contaminated Seawater in Diesel Biodegradation. Environ. Technol. Innov. 2019, 14, 100368. https://doi.org/10.1016/j.eti.2019.100368
  14. Fathepure, B.Z. Recent Studies in Microbial Degradation of Petroleum Hydrocarbonsin Hypersaline Environments. Front. Microbiol. 2014, 5, 173. https://doi.org/10.3389/fmicb.2014.00173
  15. Polutrenko, M.; Pilyashenko-Novokhatnyi, A. Effect of Nitrogenated Corrosion Inhibitors on the Growth and Ferment Activity of Sulfur Cycle Bacteria. Chem. Chem. Technol. 2013, 7, 471-475. https://doi.org/10.23939/chcht07.04.471
  16. Franco-Duarte, R.; Černáková, L.; Kadam, S.; Kaushik, K.S.; Salehi, B.; Bevilacqua, A.; Corbo, M.R.; Antolak, H.; Dybka-Stępień, K.; Leszczewicz, M. et al. Advances in Chemical and Biological Methods to Identify Microorganisms-From Past to Present. Microorganisms 2019, 7, 130. https://doi.org/10.3390/microorganisms7050130
  17. Boichenko, S.V.; Shkilniuk, I.O.; Novak, A.O. Metodyka vyznachennia mikrobiolohichnoho zabrudnennia aviatsiinykh palyv. Ukraine 94190, October 10, 2014.
  18. Kumar, A.; Murthy, L.N.; Jeyakumari, A.; Laly, S.J. Sterilization Technique Used in Microbiology. In Microbiological Examination of Seafood Pathogens; Kumar, A.; Murthy, L.N.; Jeyakumari, A.; Laly, S.J., Eds.; Mumbai Research Centre of ICAR- Central Institute of Fisheries Technology, Vashi, India, 2019; pp 3-5.
  19. Das, D. Essential Practical Handbook of Cell Biology & Genetics, Biometry & Microbiology; Academic Publishers: Kolkata, 2017.
  20. Madison, B.M. Application of Stains in Clinical Microbiolo-gy. Biotech. Histochem. 2001, 76, 119-125 https://doi.org/10.1080/bih.76.3.119.125
  21. Ali-Shtayeh, M. S. A.; Jamous, R. M.; Yaghmour, R. M. Mycology Manual; National University: Nablus, Palestine, 2013.
  22. Bücker, F.; de Moura, T.M.; da Cunha, M.E.; de Quadros, P.D.; Beker, S.A.; Cazarolli, J.C.; Caramão, E.B.; Frazzon, A.P.G.; Bento, F.M. Evaluation of the Deteriogenic Microbial Community Using qPCR, n-Alkanes and FAMEs Biodegradation in Diesel, Biodiesel and Blends (B5, B10, and B50) During Storage. Fuel 2018, 233, 911-917. https://doi.org/10.1016/j.fuel.2017.11.076
  23. ltaie, M.A.H.; Janius, R.B.; Yunus, R.; Taufiq-Yap, Y.H.; Zakaria, R. Degradation of Enriched Biodiesel under Different Storage Conditions. Biofuels 2017, 8, 181-186. https://doi.org/10.1080/17597269.2016.1215070