CREATING THE BASIS OF NON-EXHAUSTIVE TECHNOLOGY OF CYCLOHEXAN OXIDATION

2019;
: 91-96
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University

Cyclohexane oxidation is object of this research. One of the most problematic points of this process is low conversion of raw material and low selectivities for aim-products at conversions higher than 4%. One of the reasons for this is absence of modern effective catalytic systems that could increase mentioned indexes. One of the directions of solving these problems is the creation of a technology for the integrated use of the obtained oxidation products on the basis of the developed new effective catalytic systems, which will enable to increase the selectivity of the process. Perspective is the study of catalytic systems based on organic salts of valence metals and their further modification by introducing additives of different nature/

One of successful directions in search of effective catalysts for this process is creation of binary catalytic systems with use of active oxygen-containing additives and industrial catalyst – cobalt naphtenate. During this research we used oxygen-CN-containing compound – Bis-2-cianethyl ether.

We determined positive impact of researched oxygen-containing additive at main technical-economical indexes of the process of cyclohexane oxidation – selectivity for oxidation products and ratio of aim-products. Selectivity for aim products increases at 3–4 % in comparison with oxidation at industrial catalyst and remains maximal– 73 % at conversion two times higher than industrial – 7,3 %. It is determined that in presence of researched binary catalytic system at conversion higher than 4% quantity of formed acids increases to 20,3 %. Therefore we propose method of utilization of formed acids by etherification with alcohol. The esterification of the aqueous layer of acids in the excess of n-butanol in the presence of an ion exchange resin KU-2 was carried out at boiling point of the water-n-butanol azeotropic formed. Subsequently, the esters obtained can be used as plasticizers for polymers. In the case of esterification with lower alcohols, the esters obtained can be separated at boiling point and used as raw material for the allocation of individual acids.

This provides opportunity of wider use of all products of cyclohexane oxidation. In comparison with similar known methods oxidation in presence of binary catalytic system: cobalt naphtenate – Bis-2-cianethyl ether allows decrease of production cost.

1. Лудин А. М. Реутський В. В. Вплив спиртових відходів на якість моторних палив // Вiсник НУ "ЛП". Хiмiя, технологiя речовин i їх застосування. 2007. № 590. С. 195-199.
2. O. Ivashchuk, V. Reutskyy, S. Mudryy, O. Zai-chenko, N. Mitina Cyclohexane oxidation in the presence of variable valency metals chelates // Chemistry & Che-mical Technology. 2012. Vol. 6, No. 3. P. 339-343.
https://doi.org/10.23939/chcht06.03.339
3. Белянин Б. В., Эрих В.Н. Технический анализ нефтепродуктов и газа.- Изд."Химия". Ленинград 1975. С. 66-169.
4. Christopher, R. Oxidation of Cyclohexane by Transition Metal Oxides on Zeolites / R. Christopher, R. Riley, E. Nancy Montgomery, N. Nada Megally, A. Jessica Gunn, L. Shannon Davis // The Open Catalysis Journal. 2012. Vol. 3. Р. 8-13.1
https://doi.org/10.2174/1876214X01205010008
5. Мельник С. Р., Мельник Ю. Р., Іващук О. С., Миговський М. Л., Реутський В. В. Одержання естерів з побічних продуктів виробництва адипінової кис¬лоти // Вісник Національного університету "Львівсь¬ка полі-техніка". Хімія, технологія речовин та їх застосу-вання. 2004. № 497. С. 88-90.
6. Мельник С. Р., Качмар-Кос Н. Я. Естерифікація адипінової кислоти. Вплив природи кислотних каталізаторів на процес // Хімічна промисловість України. 2008. № 1. С. 7-11.
7. Солод М. І., Мельник С. Р. Естерифікація адипінової кислоти спиртами С12-С14 // Вісник Національного університету "Львівська політехніка". Хімія, технологія речовин та їх застосування. 2009. № 644. С. 149-151.
8. Melnyk, S. Perfluorooxasulphonates of metals - the catalysts of ester's manufacture // Chemistry & Chemical Technology. 2013. Vol. 7, No. 9. P. 257-260.
https://doi.org/10.23939/chcht07.03.257
9. Tracy Zhang, Bob Howell, Adina Dumitrascu, Steven J.Martin, Patrick B.Smith. Synthesis and charac-terization of glycerol-adipic acid hyperbranched polyester // Polymer. 2014. Vol. 55, No. 20. P.5065-5072
https://doi.org/10.1016/j.polymer.2014.08.036
10. Gerhard Knothe, Robert Dunn. A Comprehensive Evaluation of the Melting Points of Fatty Acids and Esters Determined by Differential canning Calorimetry // Jornal of te American Oil Chemists Society. 2009. Vol. 86. No. 9. P. 843-856.
https://doi.org/10.1007/s11746-009-1423-2
11. Gerhard Knothe. Improving Biodiesel Fuel Pro-perties by Modifying Fatty Ester Composition.// Energy and Environmental Science. 2009. Vol. 9. No. 2. P. 759-766.
https://doi.org/10.1039/b903941d
12. Lucie Coniglio, Hayet Hayet Bennadji, Pierre Alexandre Glaude, Olivier Herbinet, Francis Billaud. Combustion chemical kinetics of biodiesel and related compounds (methyl and ethyl esters): Experiments and modeling - Advances and future refinements. Progress in Energy and Combustion Science, 2013, 39, pp. 340-382.
https://doi.org/10.1016/j.pecs.2013.03.002
13. Melnyk Yu., Starchevskyi R., Melnyk S. Transesterification of sunflower oil triglycerides by 1-bu-tanol in the presence of d-metal oxides // Voprosy khimii i khimicheskoi tekhnologii, 2019, No. 4, pp. 95-10.
https://doi.org/10.32434/0321-4095-2019-125-4-95-100