Study on Hydrodynamic Parameters of the Oxidative Desulfurization of High Sulfur Straight-Run Oil Fractions

2020;
: pp. 403 - 411
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University

The article deals with the determination of hydrodynamic parameters necessary to conduct the desulfurization process of straight-run kerosene (SRKF) and straight-run diesel fractions (SRDF) via oxidation of sulfuric organic compounds, followed by the removal of oxidation products. The established parameters which are characterized by the linear rate of the oxidant (air) movement and the dummy contact time between the oxidant and the feedstock allow the process to be carried out without stirring. The proposed technology can be used for the purification of petroleum fuels produced by a small scale, when hydrotreating is economically unprofitable or technologically impossible. This process can also be used for the aftertreatment of hydrogenates and partial desulfurization of straight-run fractions to produce fuel components with improved lubricating properties.

  1. Ismagilov Z., Yashnik S., Kerzhentsev M. et al.: Cat. Rev. Sci. Eng., 2011, 53, 199. https://doi.org/10.1080/01614940.2011.596426
  2. Regulatory Impact Analysis: Heavy-Duty Engine and Vehicle Standards and Highway Diesel Fuel Sulfur Control Requirements. United States Environmental Protection Agency, Air and Radiation, EPA420-R-00-026, December 2000.
  3. United States Environmental Protection Agency, February, 2001. https://www.epa.gov
  4. Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on industrial emissions (integrated pollution prevention and control). http://data.europa.eu/eli/dir/2010/75/oj
  5. Link D., Baltrus J., Rothenberger K. et al.: Energ. Fuel., 2003, 17, 1292. https://doi.org/10.1021/ef0300747
  6. World jet fuel specifications. 2008. http://large.stanford.edu/courses/2017/ph240/chhoa1/docs/exxon-2008.pdf
  7. Boichenko S., Vovk O., Iakovlieva, A.: Chem. Chem. Technol., 2013, 7, 305. https://doi.org/10.23939/chcht07.03.305
  8. Yakovleva A., Boichenko S., Lejda K. et al.: Chem. Technolog. Fuels Oils, 2017, 53, 1. https://doi.org/10.1007/s10553-017-0774-x
  9. Iakovlieva A., Boichenko S., Gay A.: Chem. Chem. Technol., 2014, 8, 107. https://doi.org/10.23939/chcht08.01.107
  10. Banisharif F., Dehghani M., Capel-Sánchez M., Campos-Martin J.: Ind. Eng. Chem. Res., 2017, 56, 3839. https://doi.org/10.1021/acs.iecr.7b00089
  11. Babich I., Moulijn J.: Fuel, 2003, 82, 607. https://doi.org/10.1016/S0016-2361(02)00324-1
  12. Wang B., Dai B., Kang L., Zhu M.: Fuel, 2020, 265, 117029.
  13. Liu W., Li T., Yu G. et al.: Fuel, 2020, 265, 116967. https://doi.org/10.1016/j.fuel.2019.116967
  14. Mirante F., Alves A. et al.: Fuel, 2020, 259, 116213. https://doi.org/10.1016/j.fuel.2019.116213
  15. Julião D., Mirante F. et al.: Fuel, 2019, 241, 616. https://doi.org/10.1016/j.fuel.2018.11.095
  16. Pysh’yev S., Bratychak M., Lazorko O., Shyshchak O.: Pol. J. Environ. Stud., 2005, 14, 123.
  17. Lazorko О., Pysh’yev S., Bratychak M.: Chem.Chem.Technol., 2008, 2, 309.
  18. Pysh’yev S., Lazorko О., Bratychak M.: Chem. Chem. Technol., 2009, 3, 77.
  19. Pysh’yev S., Lazorko О., Bratychak M.: Chem. Chem. Technol., 2009, 3, 163.
  20. Paniv P., Pysh’yev S., Haivanovych V., Lazorko O.: Khimia i Technologia Topliva i Masel, 2006, 3, 7.
  21. Pysh’yev S.: Chem. Chem. Technol., 2012, 6, 229. https://doi.org/10.23939/chcht06.02.229
  22. Antonyshyn V., Humenetsky V.: Visnyk Nats. Univ. Lvivska Polytechnika, 1974, 82, 94.
  23. Gun R.: Neftianye Bitumy. Lhimia, Moskva 1973.
  24. Levych V.: Physico-Khimicheskaya Hydrodynamika. Izd-vo AN SSSR, Moskva 1952.