Бамбуковмісні композити з екологічно чистими в'яжучими речовинами

2023;
: cc. 807 - 819
1
1 Iv. Javakhishvili Tbilisi State University, 2 Institute of Macromolecular Chemistry and Polymeric Materials, Iv. Javakhishvili Tbilisi State University
2
Iv. Javakhishvili Tbilisi State University, 2 Institute of Macromolecular Chemistry and Polymeric Materials, Iv. Javakhishvili Tbilisi State University
3
Ivane Javakhishvili’ Tbilisi State University, Department of Macromolecular Chemistry; Institute of Macromolecular Chemistry and Polymeric Materials, Ivane Javakhishvili Tbilisi State University
4
Vladimir Chavchanidze Institute of Cybernetics of the Georgian Technical University
5
Institute of Macromolecular Chemistry and Polymeric Materials, Ivane Javakhishvili Tbilisi State University, Sokhumi State University, Faculty of Natural Sciences, Mathematics, Technologies and Pharmacy,
6
Ivane Javakhishvili Tbilisi State University R.Agladze Institute of Inorganic Chemistry and Electrochemistr
7
Vladimir Chavchanidze Institute of Cybernetics of the Georgian Technical University

Уперше синтезовано екологічно чисту в'яжучу речовину– полі[(триметокси)4-вінілфенетил)]силан за допомогою реакції алкілування Фріделя-Крафтса, яку проводили взаємодією полістирену з вінілтриметоксисиланом у присутності безводного AlCl3. Синтезований полімер було ідентифіковано за допомогою 1H, 13C, 1H COSY ЯМР іFTIR спектроскопії. Композити на основі бамбукової тирси з різними дисперсійними властивостями були створені з використанням синтетичного триметоксисилільованогополістирену(TMSPSt) та стирену з різним ступенем силілювання (5-10%). Композиційні матеріали на основі бамбукового порошку з різними органічними/неорганічними добавками, антипіренамий антиоксидантами були оброблені за різних температур і тисків методом гарячого пресування. Отримані композити досліджували методами інфрачервоної спектроскопії з перетворенням Фур'є(FTIR), оптичної та растрової електронної мікроскопії (SEM), а також енергодисперсійної рентгенівської спектроскопії (EDS). Термостабільність отриманих матеріалів визначали за допомогою термогравіметрії та методу Віка. Також досліджено водопоглинання та деякі механічні властивості.

  1. Sapuan, S.M.; Aulia, H.S.; Ilyas, R.A.; Atiqah, A.; Dele-Afolabi, T.T.; Nurazzi, M.N.; Supian, A.B.M.; Atikah, M.S.N. MechanicalProperties of Longitudinal Basalt/Woven-Glass-Fiber-reinforced Unsaturated Polyester-Resin Hybrid Composites. Polymers2020,12, 2211.https://doi.org/10.3390/polym12102211
  2. Zia, F.; Zia, K.M.; Zuber, M.; Kamal, S.; Aslam, N. Starch Based Polyurethanes: A Critical Review Updating Recent Literature.Carbohydr. Polym.2015, 134, 784–798. https://doi.org/10.1016/j.carbpol.2015.08.034
  3. Syafiq, R.; Sapuan, S.; Zuhri, M. Antimicrobial Activity, Physical, Mechanical and Barrier Properties of Sugar Palm-Based Nano Cellulose/Starch Biocomposite Films Incorporated with Cinnamon Essential Oil. J. Mater. Res. Technol. 2021, 11, 144–157.https://doi.org/10.1016/j.jmrt.2020.12.091
  4. Syafiq, R.; Sapuan, S.M.; Zuhri, M.Y.M.; Ilyas, R.A.; Nazrin, A.; Sherwani, S.F.K.; Khalina, A. Antimicrobial Activities of Starch-Based Biopolymers and Biocomposites Incorporated with Plant Essential Oils: A Review. Polymers2020, 12, 2403. https://doi.org/10.3390/polym12102403
  5. Radzi, A.M.; Sapuan, S.M.; Jawaid, M.; Mansor, M.R. Effect of Alkaline Treatment on Mechanical, Physical and Thermal Propertiesof Roselle/Sugar Palm Fiber Reinforced Thermoplastic Polyurethane Hybrid Composites. Fibers Polym. 2019, 20, 847–855.https://doi.org/10.1007/s12221-019-1061-8
  6. Nadlene, R.; Sapuan, S.M.; Jawaid, M.; Ishak, M.R.; Yusriah, L. A Review on Roselle Fiber and Its Composites. J. Nat. Fibers2016,13, 10–41. https://doi.org/10.1080/15440478.2014.984052
  7. Ishak, M.R.; Sapuan, S.M.; Leman, Z.; Rahman, M.Z.A.; Anwar, U.M.K.; Siregar, J.P. Sugar Palm (Arengapinnata): ItsFibres, Polymers and Composites. Carbohydr. Polym. 2013, 91, 699–710. https://doi.org/10.1016/j.carbpol.2012.07.073
  8. Suhot, M.; Hassan, M.; Aziz, S.; Daud, M.M. Recent Progress of Rice Husk Reinforced Polymer Composites: A Review. Polymers2021, 13, 2391. https://doi.org/10.3390/polym13152391
  9. Radzi, A.M.; Sapuan, S.M.; Jawaid, M.; Mansor, M.R. Mechanical Performance of Roselle/Sugar Palm Fiber Hybrid ReinforcedPolyurethane Composites.Bioresources2018, 13, 6238–6249. https://doi.org/10.15376/biores.13.3.6238-6249
  10. Ali, M.R.; Salit, M.S.; Jawaid, M.; Mansur, M.R.; Manap, M.F.A. Polyurethane-Based Biocomposites; Elsevier Inc.: Amsterdam,The Netherlands, 2017. https://doi.org/10.1016/B978-0-12-804065-2.00018-8
  11. Ilyas, R.A.; Sapuan, S.M.; Ibrahim, R.; Abral, H.; Ishak, M.; Zainudin, E.; Asrofi, M.; Atikah, M.S.N.; Huzaifah, M.R.M.; Radzi,A.M.; et al. Sugar Palm (Arengapinnata (Wurmb.) Merr) Cellulosic Fibre Hierarchy: A Comprehensive Approach from Macro to NanoScale. J. Mater. Res. Technol. 2019, 8, 2753–2766.https://doi.org/10.1016/j.jmrt.2019.04.011
  12. Kasim, F.A.M.; Roslan, S.A.H.; Rasid, Z.A.; Yakub, F.; Hassan, M.Z.; Yahaya, H. Post-Buckling of Bamboo Reinforced CompositePlates. IOP Conference Series: Materials Science and Engineering 2021, 1051, 012040. https://doi.org/10.1088/1757-899X/1051/1/012040
  13. Sari, N.H.; Pruncu, C.I.; Sapuan, S.M.; Ilyas, R.A.; Catur, A.D.; Suteja, S.; Sutaryono, Y.A.; Pullen, G. The Effect of Water Immersion and Fibre Content on Properties of Corn Husk Fibres Reinforced Thermoset Polyester Composite. Polym Test2020, 91, 106751.https://doi.org/10.1016/j.polymertesting.2020.106751
  14. Asyraf, M.R.M.; Ishak, M.R.; Sapuan, S.M.; Yidris, N.; Ilyas, R.A.; Rafidah, M.; Razman, M.R. Potential Application of GreenComposites for Cross Arm Component in Transmission Tower: A Brief Review. Int J PolymSci2020,2020, 8878300. https://doi.org/10.1155/2020/8878300
  15. Venkatesha, B.; Saravanan, R.; Bavan, D.S. Review on Mechanical Properties and Fatigue Life of E-Glass/Bamboo Fiber ReinforcedPolymer Composites.International Journal of Engineering Sciences & Management2017, 7, 52–57.
  16. Radzi A.M.; Zaki, S.A.; Hassan, M.Z.; Ilyas,R.A.; Jamaludin, K.R.; Md Daud, M.Y.; Aziz, S.A.Bamboo-Fiber-Reinforced Thermoset and Thermoplastic Polymer Composites: A Review of Properties, Fabrication, and Potential Applications. Polymers2022, 14, 1387.https://doi.org/10.3390/polym14071387
  17. Ramesh, M.; Palanikumar, K.; Reddy, K.H. Plant Fibre Based Bio-Composites: Sustainable and Renewable Green Materials.Renew. Sust. Energ. Rev.2017, 79, 558–584.https://doi.org/10.1016/j.rser.2017.05.094
  18. Martijanti, M.;Sutarno, S.;Juwono, A.L. Polymer Composite Fabrication Reinforced with Bamboo Fiberfor Particle Board Product Raw Material Application.Polymers2021, 13, 4377.https://doi.org/10.3390/polym13244377
  19. Bamboo Fiber Composites; Processing, Properties and Applications; Jawaid, M.;Rangappa, S.M.;Siengchin, S., Eds.; Springer Singapore,2021.
  20. Tomalang, F.N.; Lopez, A.R.;Semara, J.A.;Casin, R.F.;Espiloy, Z.B. Properties and Utilization of Philippine erect bamboo. In Bamboo research in Asia: proceedings of a workshop held in Singapore, 28-30 May 1980;IDRC, Ottawa, ON, CA,2008; pp266–275.http://hdl.handle.net/10625/16761
  21. Lykidis, C.;Grigoriou, A. Hydrothermal Recycling of Waste and Performance of the Recycled Wooden Particleboards.Waste Manage. 2008, 28, 57–63.https://doi.org/10.1016/j.wasman.2006.11.016
  22. Abdulkareem, S.A.;Adeniyi, A.G. Production of Particleboards Using Polystyrene and Bamboo Wastes. Niger. J. Technol. 2017,36,788–793. http://dx.doi.org/10.4314/njt.v36i3.18
  23. Ramesh, M.;RajeshKumar, L.;Bhuvaneshwari, V. Bamboo Fiber Reinforced Composites. In Bamboo Fiber Composites; Jawaid, M.;Rangappa, S.M.;Siengchin, S., Eds.; Springer Singapore, 2021; pp 1–13.
  24. Mukbaniani, O.;Brostow, W.;HaggLobland, H.E.;Aneli, J.;Tatrishvili, T.;Markarashvili, E.;Dzidziguri, D.;Buzaladze, G.Composites Containing Bamboo with Different Binders.Pure Appl. Chem. 2018, 90, 1001–1009.https://doi.org/10.1515/pac-2017-0804
  25. Aneli, J.; Shamanauri, L.; Markarashvili, E.; Tatrishvili, T.; Mukbaniani, O. Polymer-Silicate Composites with Modified Minerals. Chem. Chem. Technol. 2017, 11, 201–209. https://doi.org/10.23939/chcht11.02.201
  26. Tolentino, M.S.;Carpena, J.F.; Javier, R.M.; Aquino, R.R. Thermal Treatment Temperature and Time Dependence of Contact Angle of Water on Fluorinated Polystyrene as Hydrophobic Film Coating. IOP Conf. Ser.: Mater. Sci. Eng.2017, 205,012024. https://doi.org/10.1088/1757-899X/205/1/012024
  27. Mukbaniani, O.;Tatrishvili,T.;Markarashvili,E.; Londaridze,L.; Pachulia, Z.;Pirtskheliani, N. Synthesis of Triethoxy(Vinylphenethyl)Silane With Alkylation Reaction ofVinyltriethoxysilane to Styrene. Oxid. Commun. 2022, 45, 309–320.
  28. Demchuk, Y.; Gunka, V.; Pyshyiv, S.;Sidun, Y.; Hrynchuk, Y.; Kucinska-Lipka, J.; Bratychak, M. Slurry Surfacing Mixed on the Basis of Bitumen Modified with Phenol-Cresol-Formaldehyde Resin.Chem. Chem. Technol. 2020, 14, 251–256.https://doi.org/10.23939/chcht14.02.251
  29. Bashta, B.;Astakhova, O.;Shyshchak, O.;Bratychak, M. Epoxy Resins Chemical Modification by Dibasic Acids. Chem. Chem. Technol. 2014, 8(3), 309–316.https://doi.org/10.23939/chcht08.03.309
  30. Liu, C.; Tanaka, Y.; Fujimoto Y. Viscosity Transient Phenomenon during Drop Impact Testing and Its Simple Dynamics Model. World J. Mech.2015,5,33-41. https://doi.org/10.4236/wjm.2015.53004
  31. Mukbaniani, O.;Brostow, W.;Aneli, J.;Londaridze, L.;Markarashvili, E.;Tatrishvili, T.;Gencel, O. Wood Sawdust Plus Silylated Styrene Composites with Low Water Absorption. Chem. Chem. Technol. 2022, 16, 377–386.https://doi.org/10.23939/chcht16.03.377
  32. Smith, B.C.Distinguishing Structural Isomers: Mono- and Disubstituted Benzene Rings. Spectroscopy2016, 31, 36-39.
  33. Swanson, N.Polybutadiene graft copolymers as coup¬ling agents in rubber compounding. Ph.D. Thesis, Graduate Faculty of the University of Akron, Akron, USA,2016.
  34. ChemBioDraw Ultra 12. https://en.freedownloadmanager.org/users-choice/Chemdraw_Ultra_12.0_Free...
  35. MestreNova. https://mestrelab.com/software/mnova/nmr/
  36. Kyle A. Baseden and Jesse W. Tye.Introduction to Density Functional Theory: Calculations by Hand on the Helium Atom.J. Chem. Educ. 2014, 12, 2116–2123.https://doi.org/10.1021/ed5004788
  37. Tatrishvili, T.; Koberidze, Kh.;Mukbaniani, O.Quantum-Chemical AM 1 Calculations for Hydride Addition Reaction of Methyldimethoxysilane to 1,3-Cyclohexadiene. Bull. Georgian National Acad. Sci.2007, 3, 297-300.
  38. Mukbaniani, O.; Tatrishvili, T.; Titvinidze, G. AM1 Calculations for Hydrosilylation Re¬a¬c¬tion ofMethyldimethoxysilane with Hexane-1. Bull. Georgian National Acad. Sci. 2006, 32, 109–114.
  39. Tatrishvili, T.; Titvinidze, G.; Mukbaniani, O.AM1 Calculations for Hydride Addition Rea¬c¬¬tion of Methyldimethoxysilane with Styrene.Georgia Chemical Jo¬ur¬nal2006, 6, 58–59.
  40. Mukbaniani, O.; Pirtskheliani, N.; Tatrishvili, T.; Patstasia, S.Hydrosi¬ly¬la¬ti¬onReactions of α,ω-bis(Trimethylsiloxy)methylhydridesiloxane to Allyloxytriethoxysilane. Georgia Chemical Journal2006, 6, 254–255.
  41. Janssen, J.J.A. Building with bamboo (2nd ed.); Intermediate Technology Publication Limited, London,1995.
  42. Amada, S.; Ichikawa, Y.; Munekata, T.; Nagase, Y.; Shimizu, K.Fiber Texture and Mechanical Graded Structure of Bamboo. Compos. B. Eng.1997, 28, 13–20.https://doi.org/10.1016/S1359-8368(96)00020-0
  43. Mukbaniani, O.;Brostow, W.; Aneli, J.; Markarashvili, E. Tatrishvili, T.; Buzaladze, G.; Parulava, G. Sawdust Based Composites. Polym. Adv. Technol. 2020, 31, 2504–2511. https://doi.org/10.1002/pat.4965
  44. Chang, H.-T.; Yeh, T.-F.; Hsu, F.-L.; Kuo-Huang, L.-L.; Lee, C.-M.; Huang, Y.-S.; Chang, S.-T. Profiling the Chemical Composition and Growth Strain of Giant Bamboo, (Dendrocalamusgiganteus Munro). Bioresource2015,10, 1260-1270.https://doi.org/10.15376/biores.10.1.1260–1270
  45. Muraganatham, S.;Anbalagan, G.; Ramamurthy, N. FT-IR and Semeds Comparative Analysis of Medicinal Plants. EcliptaalbaHassk and EcliptaprostrateLinn. Rom J. Biophys. 2009, 19, 285–294.
  46. Mukbaniani,O.;Aneli,J.;Tatrishvili, T.;Markarashvili, E.;Londaridze, L.;Kvinikadze, N.;Kakalashvili, L. Wood Polymer Composite Based On A Styrene And Triethoxy(Vinylphenethyl)silane.Chem. Chem. Technol. 2023,17, 35–44.https://doi.org/10.23939/chcht17.01.035
  47. Mukbaniani, O.;Aneli, J.;Buzaladze, G.;Markarashvili, E.; Tatrishvili, T. Composites on the Basis of Straw with some Organic and Inorganic Binders. Oxid. Commun. 2016,39, 2763–2777.