Effect of Bisphenol-Formaldehyde Resin on Physico-Mechanical Properties of Road Bitumen

: pp. 23 - 29
Lviv Polytechnic National University, Danylo Halytsky Lviv National Medical University
Lviv Polytechnic National University
Lviv Polytechnic National University
Lviv Polytechnic National University
Danylo Halytsky Lviv National Medical University
Danylo Halytsky Lviv National Medical University
National University Lviv Polytechnic
Lviv Polytechnic National University

A bisphenol-formaldehyde resin was synthesized using the polycondensation method of bisphenol A with formaldehyde. Road bitumen has been modified with this resin. The possibility of its use as a road petroleum bitumen modifier has been established for different contents of the synthesized resin. It has been established that the introduction of synthesized bisphenol-formaldehyde resin into the composition of bitumen significantly increases its heat resistance. The synthesized resin and modified bitumens were characterized using IR spectroscopy. The change in the composition and properties of the bitumen modified with bisphenol-formaldehyde resin has been described.

  1. Pstrowska, K.; Gunka, V.; Sidun, I.; Demchuk, Y.; Vytrykush, N.; Kułażyński, M.; Bratychak, M. Adhesion in Bitumen/Aggregate System: Adhesion Mechanism and Test Methods. Coatings 2022, 12, 1934–1952. https://doi.org/10.3390/coatings12121934
  2. Hrynchuk, Yu.; Sidun, Iu.; Gunka, V.; Prysiazhnyi, Yu.; Reut- skyy, V.; Mosiuk, M. Epoxide of Rapeseed Oil-Modifier for Bitu- men and Asphalt Concrete. Pet. Coal 2019, 61, 836–842.
  3. Wręczycki, J.; Demchuk, Y.; Bieliński, D.; Bratychak, M.; Gunka, V.; Anyszka, R.; Gozdek, T. Bitumen Binders Modified with Sulfur/Organic Copolymers. Materials 2022, 15, 1774. https://doi.org/10.3390/ma15051774
  4. Grynyshyn, O.; Donchenko, M.; Khlibyshyn, Yu.; Poliak, O. Investigation of Petroleum Bitumen Resistance to Aging. Chem. Chem. Technol. 2021, 15, 438–442. https://doi.org/10.23939/chcht15.03.438
  5. Nagurskyy, A.; Khlibyshyn, Y.; Grynyshyn, O. Bitumen Com- positions for Cold Applied Roofing Products. Chem. Chem. Tech- nol. 2017, 11, 226–229. https://doi.org/10.23939/chcht11.02.226
  6. Nizamuddin, S.; Boom, Y. J.; Giustozzi, F. Sustainable Poly- mers from Recycled Waste Plastics and their Virgin Counterparts as Bitumen Modifiers: A Comprehensive Review. Polymers 2021, 13, 3242. https://doi.org/10.3390/polym13193242
  7. Pstrowska, K.; Gunka, V.; Prysiazhnyi, Y., Demchuk, Y.; Hryn- chuk, Y.; Sidun, I.; Bratychak, M. Obtaining of Formaldehyde Modified Tars and Road Materials on Their Basis. Materials 2022, 15, 5693. https://doi.org/10.3390/ma15165693
  8. Gunka, V.; Demchuk, Y.; Sidun, I.; Kochubei, V.; Shved, M.; Romanchuk, V.; Korchak, B. Chemical Modification of Road Oil Bitumens by Formaldehyde. Pet. Coal 2020, 62, 420–429.
  9. Demchuk, Y.; Sidun, I.; Gunka, V.; Pyshyev, S.; Solodkyy, S. Effect of Phenol-Cresol-Formaldehyde Resin on Adhesive and Physico-Mechanical Properties of Road Bitumen. Chem. Chem. Technol. 2018, 12, 456–461.https://doi.org/10.23939/chcht12.04.456
  10. Bratychak, M.; Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 1. Effect of Solvent Nature on the Properties of Petroleum Residues Modified with Folmaldehyde. Chem. Chem. Technol. 2021, 15, 274–283. https://doi.org/10.23939/chcht15.02.274
  11. Geckil, T.; Seloglu, M. Performance Properties Of Asphalt Modified With Reactive Terpolymer. Constr. Build. Mater. 2018, 173, 262–271. https://doi.org/10.1016/j.conbuildmat.2018.04.036
  12. Kumandaş, A.; Çavdar, E.; Oruç, Ş.; Pancar, E. B.; Kök, B. V. Effect of WCO Addition on High and Low-Temperature Perform- ance of RET Modified Bitumen. Constr. Build. Mater. 2022, 323, 126561. https://doi.org/10.1016/j.conbuildmat.2022.126561
  13. Starchevskyy, V.; Hrynchuk, Y.; Matcipura, P.; Reutskyy, V. Influence Of Initiators On The Adhesion Properties Of Bitumen Modified By Natural Origin Epoxide. Chem. Chem. Technol. 2021, 15, 142–147. https://doi.org/10.23939/chcht15.01.142
  14. Chopra, A.; Singh, S. Performance Evaluation on Epoxy Modi- fied Bituminous Mix. Materials Today: Proceedings 2022, 51, 1197–1200. https://doi.org/10.1016/j.matpr.2021.07.206
  15. Ivashkiv, O.; Astakhova, O.; Shyshchak, O.; Plonska- Brzezinska, M.; Bratychak, M. Structure And Application of ED-20 Epoxy Resin Hydroxy-Containing Derivatives in Bitumen- Polymeric Blends. Chem. Chem. Technol. 2015, 9, 69–76. https://doi.org/10.23939/chcht09.01.069
  16. Çubuk, M.; Gürü, M.; Çubuk, M. K. Improvement of Bitumen Performance with Epoxy Resin. Fuel 2009, 88, 1324–1328. https://doi.org/10.1016/j.fuel.2008.12.024
  17.  Xia, Q.; Li, Y.; Xu, H.; Luo, H.; Zheng, Y.; Zhao, R.; Xu, H. Using Phenol Formaldehyde Resin, Hexamethylenetetramine and Matrix Asphalt to Synthesize Hard-Grade Asphalts for High- Modulus Asphalt Concrete. Sustainability 2022, 14, 15689. https://doi.org/10.3390/su142315689
  18. Zhang, H.; Su, C.; Bu, X.; Zhang, Y.; Gao, Y.; Huang, M. Laboratory investigation on the properties of polyure- thane/unsaturated polyester resin modified bituminous mixture. Constr. Build. Mater. 2020, 260, 119865. https://doi.org/10.1016/j.conbuildmat.2020.119865
  19. Shi, X.; Zhang, H.; Bu, X.; Zhang, G.; Zhang, H.; Kang, H. Performance Evaluation of BDM/Unsaturated Polyester Resin- Modified Asphalt Mixture for Application in Bridge Deck Pave- ment. Road Mater. Pavement Des. 2022, 23, 684–700. https://doi.org/10.1080/14680629.2020.1828154
  20. Çubuk, M.; Gürü, M.; Çubuk, M.K.; Arslan, D. Rheological Properties and Performance Evaluation of Phenol Formaldehyde Modified Bitumen. J. Mater. Civ. Eng. 2014, 26. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000889
  21. Gupta, A.; Chopra, E. A. Comparative Study of Conventional and Bakelite Modified Bituminious Mix. Int. J. Civ. Eng. Technol. 2019, 10, 1386–1392. https://ssrn.com/abstract=3457096
  22. Saha, S.K.; Suman, S.K. Characterization of Bakelite-Modified Bitumen. Innov. Infrastruct. Solut. 2017, 2, 3. https://doi.org/10.1007/s41062-017-0052-0
  23. Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Resi- dues. 3. Tar Modified with Formaldehyde. Chem. Chem. Technol. 2021, 15, 608–620. https://doi.org/10.23939/chcht15.04.608
  24. Gunka, V.; Bilushchak, H.; Prysiazhnyi, Y.; Demchuk, Y.; Hrynchuk, Y.; Sidun, I.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 4. Determining the Optimal Conditions for Tar Modifica- tion with Formaldehyde and Properties of the Modified Products. Chem. Chem. Technol. 2022, 16, 142–149. https://doi.org/10.23939/chcht16.01.142
  25. Gunka, V.; Demchuk, Y.; Pyshyev, S.; Anatolii, S.; Lypko, Y. The Selection of Raw Materials for the Production of Road Bitumen Modified by Phenol-Cresol-Formaldehyde Resins. Pet. Coal. 2018, 60, 1199–1206.
  26. Demchuk, Y.; Gunka, V.; Sidun, I.; Solodkyy, S. Comparison of Bitumen Modified by Phenol Formaldehyde Resins Synthesized from Different Raw Materials. In International Scientific Conference Eco- Comfort and Current Issues of Civil Engineering; Springer, Cham., 2020; pp. 95–102. https://doi.org/10.1007/978-3-030-57340-9_12
  27. Pyshyev, S.; Demchuk, Y.; Poliuzhyn, I.; Kochubei, V. Obtain- ing and Use Adhesive Promoters to Bitumen from the Phenolic Frac- tion of Coal Tar. Int J Adhes Adhes. 2022, 118, 103191. https://doi.org/10.1016/j.ijadhadh.2022.103191
  28. Gunka, V.; Demchuk, Y.; Sidun, I.; Miroshnichenko, D.; Nya- kuma, B.B.; Pyshyev, S. Application of Phenol-Cresol-Formaldehyde Resin as an Adhesion Promoter for Bitumen and Asphalt Concrete. Road Mater. Pavement Des. 2020, 22, 2906–2918. https://doi.org/10.1080/14680629.2020.1808518
  29. EN 1426:2015, Bitumen and bituminous binders. Determination of needle penetration, 2015.
  30. EN 1427:2015, Bitumen and bituminous binders. Determination of the softening point. Ring and Ball method, 2015.
  31. EN 12596:2018, Bitumen and bituminous binders. Determination of dynamic viscosity by vacuum capillary, 2018.
  32. EN 12595:2018, Bitumen and bituminous binders. Determination of kinematic viscosity, 2018.
  33. EN 12592:2018, Bitumen and bituminous binders. Determination of solubility, 2018.
  34. DSTU 8787:2018 (National Standard of Ukraine), Bitumen and bituminous binders. Determination of adhesion with crushed stone, 2018.
  35. EN 12593, Bitumen and bituminous binders. Determination of the Fraass breaking point, 2015.
  36. EN 12591, Bitumen and bituminous binders. Specifications for paving grade bitumens, 2009.
  37. Knop A., Scheib W. Chemistry and Application of Phenolic Resins. Springer-Verlag: Berlin, Heidelberg, New York, 1979.  
  38. Bratychak, M.M.; Getmanchuk, Y.P. Khimichna tekhnolohiya syntezu vysokomolekulyarnykh spoluk; Lvivska politekhnyka: Lviv, 2009.
  39. Parker, F.S. Applications of Infrared Spectroscopy in Biochemis- try, Biology, and Medicine; Springer: New York, 1971.