Validation of the Method for Quantifying Naringin in Grapefruit (Citrus paradisi) Extract Using High-Performance Liquid Chromatography

2024;
: pp. 16 - 22
1
Azerbaijan Medical University
2
Azerbaijan Medical University
3
Azerbaijan Medical University
4
Azerbaijan Medical University
5
Azerbaijan Medical University
6
Azerbaijan Medical University

The study validates the HPLC method for quantifying naringin in a grapefruit extract. The demonstrated high accuracy, precision, and reproducibility were achieved with recovery ranging from 99.73% to 100.65%. The method linearity was confirmed by a correlation coefficient of 0.999. These findings have significant implications for grapefruit-based pharmaceutical development.

  1. Quintão, W.S.C.; Ferreira-Nunes, R.; Gratieri, T.; Cunha- Filho, M.; Gelfuso, G.M. Validation of a Simple Chromatographic Method for Naringenin Quantification in Skin Permeation Experi- ments. J. Chromatogr. B. 2022, 1201-1202, 123291. https://doi.org/10.1016/j.jchromb.2022.123291
  2. Jha, D.K.; Shah, D.S.; Talele, S.R.; Amin, D. Correlation of Two Validated Methods for the Quantification of Naringenin in its Solid Dispersion: HPLC and UV Spectrophotometric Methods. SN Appl. Sci. 2020, 2, 698. https://doi.org/10.1007/s42452-020-2536-3
  3. Ribeiro, I.A.; Ribeiro, M.H.L. Naringin and Naringenin De- termination and Control in Grapefruit Juice by a Validated HPLC Method. Food Control 2008, 19, 432–438. https://doi.org/10.1016/j.foodcont.2007.05.007
  4. Caccamese, S.; Chillemi, R. Racemization at C-2 of Naringin in Pummelo (Citrus Grandis) with Increasing Maturity Determined by Chiral High-Performance Liquid Chromatography. J. Chroma- togr. A 2010, 1217, 1089–1093.https://doi.org/10.1016/j.chroma.2009.10.073
  5. Asghari, A.; Barfi, B.; Barfi, A.; Saeidi, I.; Ghollasi Moud, F.; Peyrovi, M.; Beig Babaei, A. Comparison between Conventional Solid Phase Extraction and Its Simplified Method for HPLC Deter- mination of Five Flavonoids in Orange, Tangerine, and Lime Juice Samples. Acta Chromatogr. 2014, 26, 157–175. https://doi.org/10.1016/j.chroma.2013.08.078
  6. Liu, E.-H.; Zhao, P.; Duan, L.; Zheng, G.-D.; Guo, L.; Yang, H.; Li, P. Simultaneous Determination of Six Bioactive Flavonoids in Citri Reticulatae Pericarpium by Rapid Resolution Liquid Chro- matography Coupled with Triple Quadrupole Electrospray Tandem Mass Spectrometry. Food Chem. 2013, 141, 3977–3983. https://doi.org/10.1016/j.foodchem.2013.06.077
  7. Baranowska, I.; Hejniak, J.; Magiera, S. Development and Validation of a RP-UHPLC-ESI-MS/MS Method for the Chiral Separation and Determination of Flavanone, Naringenin and Hes- peretin Enantiomers. Talanta 2016, 159, 181–188. https://doi.org/10.1016/j.talanta.2016.06.020
  8. Csuti, A.; Sik, B.; Ajtony, Z. Measurement of Naringin from Citrus Fruits by High-Performance Liquid Chromatography – A Review. Crit Rev Anal Chem. 2022, 1–14. https://doi.org/10.1080/10408347.2022.2082241
  9. Suleymanov, T.A.; Balayeva, E.Z.; Akhmedov, E.Yu. Devel- opment and Determination of Validation Parameters for the HPLC Method of Thymol Quantification in “Kalinol Plus” Syrup. News of Pharmacy 2016, 3. https://doi.org/10.24959/nphj.16.2117
  10. Foods Program Methods Validation Processes and Guidelines. 2021. https://www.fda.gov/food/laboratory-methods-food/foods- program-methods-validation-processes-and-guidelines
  11. Foods Program Compendium of Analytical Laboratory Meth- ods. 2023. https://www.fda.gov/food/laboratory-methods-food/foods- program-compendium-analytical-laboratory-methods
  12. Guidelines for the Validation of Chemical Methods in Food, Feed, Cosmetics, and Veterinary Products 3rd Edition U.S. Food and Drug Administration Foods Program. 2019. https://s27415.pcdn.co/wp-content/uploads/2020/01/64ER20- 7/Validation_Methods/b-Chemical-Methods-Validation-Guidelines_3rd-ed_RSSC-508_final_12_06_19.pdf
  13. ICH Harmonised Tripartite Guideline. Validation of Analytical Procedures: Text and Methodology Q2(R1). ICH: Geneva, 1995.
  14. Suleria, H.A.R.; Barrow, C.J.; Dunshea, F.R. Screening and Characterization of Phenolic Compounds and their Antioxidant Ca- pacity in Different Fruit Peels. Foods 2020, 9, 1206. https://doi.org/10.3390/foods9091206
  15. Martín, J.F.; Liras, P. Comparative Molecular Mechanisms of Biosynthesis of Naringenin and Related Chalcones in Actinobacteria  and Plants: Relevance for the Obtention of Potent Bioactive Metabolites.Antibiotics 2022, 11, 82. https://doi.org/10.3390/ANTIBIOTICS11010082
  16. Guttman, Y.; Yedidia, I.; Nudel, A.; Zhmykhova, Y.; Kerem, Z.; Carmi, N. New Grapefruit Cultivars Exhibit Low Cytochrome P4503A4-Inhibition Activity. Food Chem. Toxicol. 2020, 137, 111135. https://doi.org/10.1016/J.FCT.2020.111135
  17. Ferreira-Nunes, R.; Angelo, T.; da Silva, S.M.M.; Magalhães, O.; Gratieri, T.; da Cunha-Filho, M.S.S.; Gelfuso, G.M. Versatile Chromatographic Method for Catechin Determination in Develop- ment of Topical Formulations Containing Natural Extracts. Biomed. Chromatogr. 2018, 32, e4062. https://doi.org/10.1002/bmc.4062
  18. Agrawal, K.; Agrawal, C.; Blunden, G. Pharmacological Sig- nificance of Hesperidin and Hesperetin, Two Citrus Flavonoids, as Promising Antiviral Compounds for Prophylaxis Against and Com- bating COVID-19. Nat. Prod. Commun. 2021, 16. https://doi.org/10.1177/1934578X211042540
  19. Qurtam, A.A.; Mechchate, H.; Es-safi, I.; Al-zharani; M., Nasr, F.A.; Noman, O.M.; Aleissa, M.; Imtara, H.; Aleissa, A.M.; Bouhrim, M. Citrus Flavanone Narirutin, in vitro and in silico Mechanistic Antidiabetic Potential. Pharmaceutics 2021, 13, 1818. https://doi.org/10.3390/pharmaceutics13111818
  20. Priyadarsani, S.; Patel, A.S.; Kar, A.; Dash, S. Process Optimi- zation for the Supercritical Carbondioxide Extraction of Lycopene from Ripe Grapefruit (Citrus paradisi) Endocarp. Sci. Rep. 2021, 11, 10273. https://doi.org/10.1038/s41598-021-89772-6