Investigation of n-Butane Conversion on Pd, Rh, Ru Catalysts Supported by Al2O3 and SiO2

2024;
: pp. 386 - 392
1
Department of Physical Chemistry, Catalysis and Petrochemistry, Al-Farabi Kazakh National University
2
Department of Physical Chemistry, Catalysis and Petrochemistry, Al-Farabi Kazakh National University

This study explored the dehydrogenation of n-butane using Pd, Rh, and Ru catalysts on aluminum and silicon oxide supports. Aluminum oxide (Al2O3) showed superior conversion of n-butane, especially with 1% Pd/γAl2O3, yielding 31% target alkenes. This catalyst offers potential for scaling up n-butane dehydrogenation technology.

[1]     Wang, T.; Li, G.; Cui, X.; Abild-Pedersen, F. Identification of Earth-Abundant Materials for Selective Dehydrogenation of Light Alkanes to Olefins. Proc. Natl. Acad. Sci. U.S.A. 2021, 118, e2024666118. https://doi.org/10.1073/pnas.2024666118

[2]     Natarajan, P.; Khan, H.; Yoon, S.; Jung, K. D. One-Pot Synthesis of Pt-Sn Bimetallic Mesoporous Alumina Catalysts with Worm-Like Pore Structure for n-Butane Dehydrogenation. J. Ind. Eng. Chem. 2018, 63, 380–390.https://doi.org/10.1016/j.jiec.2018.02.038

[3]     Chu, M.; Liu, Y.; Gong, J.; Zhang, C.; Wang, X.; Zhong, Q.; Wu, L.; Xu, Y. Suppressing Dehydroisomerization Boosts n-Butane Dehydrogenation with High Butadiene Selectivity. Chem. 2021, 27, 11643–11648. https://doi.org/10.1002/chem.202101087

[4]     Veldurthi, S.; Shin, C.; Joo, O.; Jung, K.-D. Promotional Effects of Cu on Pt/Al2O3 and Pd/Al2O3 Catalysts During n-Butane Dehydrogenation. Catal. Today, 2012, 185, 88–93. https://doi.org/10.1016/j.cattod.2011.11.021

[5]     Rodrıguez, L.; Romero, D.; Rodriguez, D.; Sánchez, J.; Domínguez, F.; Arteaga, G. Dehydrogenation of n-Butane over Pd- Ga/Al2O3 Catalysts. Appl. Catal. A-Gen. 2010, 373, 66–70. https://doi.org/10.1016/j.apcata.2009.10.040

[6]     Li, C.; Wang, G. Dehydrogenation of Light Alkanes to Mono- Olefins. Chem. Soc. Rev. 2021, 50, 4359–4381. https://doi.org/10.1039/d0cs00983k

[7]     PGM Management. https://matthey.com/products-and-markets/ pgms-and-circularity/pgm-management (Accessed Dec. 22, 2023).  

[8]      Nagaraja, B.; Shin, C.; Jung, K. Selective and Stable Bimetallic PtSn/θ-Al2O3 Catalyst for Dehydrogenation of n-Butane to n-Butenes. Appl. Catal. A-Gen. 2013, 467, 211–223. https://doi.org/10.1016/j.apcata.2013.07.022

[9]     Pham, H. N.; Sattler, J. J.; Weckhuysen, B. M.; Datye, A. K. Role of Sn in the Regeneration of Pt/γ-Al2O3 Light Alkane Dehydrogenation Catalysts. ACS Catal. 2016, 6, 2257–2264. https://doi.org/10.1021/acscatal.5b02917

[10]   Fedevych, O. Study on Heterogeneous Catalytic Oxidative Dehydrogenation of Isopropylbenzene to-Methylstyrene. Chem. Chem. Technol. 2022, 16, 507–514. https://doi.org/10.23939/chcht16.04.507

[11]   Makido, O.; Khovanets, G.; Kochubei, V.; Yevchuk, I. Nanostructured Magnetically Sensitive Catalysts for the Fenton System: Obtaining, Research, Application. Chem. Chem. Technol. 2022, 16, 227–236. https://doi.org/10.23939/chcht16.02.227

[12]   Tanimu, G.; Jermy, B.; Asaoka, S.; Al-Khattaf, S. Composition Effect of Metal Species in (Ni, Fe, Co)-Bi-O/gamma- Al2O3 Catalyst on Oxidative Dehydrogenation of n-Butane to Butadiene. J. Ind. Eng. Chem. 2017, 45, 111–120. https://doi.org/10.1016/j.jiec.2016.09.013

[13]   Zhu, Q.; Wang, G.; Zhang, H.; Zhu, X.; Li, C. n-Butane Dehydrogenation over Ni-Sn/SiO2: Adsorption Modes and Reaction Paths of n-Butane and 1-Butene. Appl. Catal. A-Gen. 2018, 566, 113–120. https://doi.org/10.1016/j.apcata.2018.08.016

[14]   Deng, L.; Miura, H.; Shishido, T.; Wang, Zh.; Hosokawa, S.; Teramura, K.; Tanaka, T. Elucidating Strong Metal-Support Interactions in Pt-Sn/SiO2 Catalyst and its Consequences for Dehydrogenation of Lower Alkanes. J. Catal. 2018, 365, 277–291. https://doi.org/10.1016/j.jcat.2018.06.028

[15]   Osterrieth, J.W.M.; Rampersad, J.; Madden, D.; Rampal, N.; Skoric, L.; Connolly, B.; Allendorf, M.D.; Stavila, V.; Snider, J.L.; Ameloot, R. et al. How Reproducible are Surface Areas Calculated from BET Equation? Adv. Mater. 2022, 34, e2201502. https://doi.org/10.1002/adma.202201502

[16]   Quenel, J.; Anders, M.; Atakan, B. Propane-Isobutane Mixtures in Heat Pumps with Higher Temperature Lift: An Experimental Investigation. Therm. Sci. Eng. Prog. 2023, 42, 101907. https://doi.org/10.1016/j.tsep.2023.101907

[17]   Ullah, Z.; Khan, M.; Khan, I.; Jamil, A.; Sikandar, U.; Mehran, M. T.; Mubashir, M.; Tham, P. E.; Khoo, K. S.; Show, P. L. Recent Progress in Oxidative Dehydrogenation of Alkane (C2– C4) to Alkenes in a Fluidized Bed Reactor under Mixed Metallic Oxide Catalyst. J. Inorg. Organomet. Polym. Mater. 2022, 34, 1–13. https://doi.org/10.1007/s10904-022-02433-7

[18]   Gao, Y.; Wang, X.; Corolla, N.; Eldred, T.; Bose, A.; Gao, W.; Li, F. Alkali Metal Halide-Coated Perovskite Redox Catalysts for Anaerobic Oxidative Dehydrogenation of n-Butane. Sci. Adv. 2022, 8, eabo7343. https://doi.org/10.1126/sciadv.abo7343

[19]   Kopač, D.; Jurković, D. L.; Likozar, B.; Huš, M. First- principles-based Multiscale Modelling of Nonoxidative Butane Dehydrogenation on Cr2O3 (0001). ACS Catal. 2020, 10, 14732– 14746. https://doi.org/10.1021/acscatal.0c03197

[20]   Giannakakis, G.; Flytzani-Stephanopoulos, M.; Sykes, E.C.H. Single-atom Alloys as a Reductionist Approach to the Rational Design of Heterogeneous Catalysts. Acc. Chem. Res. 2019, 52, 237–247. https://doi.org/10.1021/acs.accounts.8b00490

[21]   Wolf, M.; Raman, N.; Taccardi, N.; Haumann, M.; Wasserscheid, P. Coke Formation during Propane Dehydrogenation over Ga-Rh Supported Catalytically Active Liquid Metal Solutions. ChemCatChem. 2020, 12, 1085–1094.https://doi.org/10.1002/cctc.201901922

[22]  Du, B.; Chen, X.; Ling, Y.; Niu, T.; Guan, W.; Meng, J.; Hu, H.; Tsang, C. W.; Liang, C. Hydrogenolysis-Isomerization of Waste Polyolefin Plastics to Multibranched Liquid Alkanes.ChemSusChem. 2023, 16, e202202035.https://doi.org/10.1002/cssc.202202035