Advances in Selective Oxidation of Organic Sulfides by Hydrogen Peroxide over Titanium Catalyst

2025;
: pp. 34 - 51
Authors:
1
Jagiellonian University in Krakow, Faculty of Chemistry

Hydrogen peroxide (H2O2) is a versatile oxidant used in various chemical syntheses, including the selective oxidation of organic compounds and the conversion of organic pollutants in wastewater. The increasing interest in H2O2 as a “green oxidant” is largely due to environmental considerations assigned to the clean nature of hydrogen peroxide as an oxidant because its byproduct is only water. The selected catalytic processes of organic sulfide oxidation, as a method used for the production of valuable chemicals, as well as the potential method of crude oil desulfurization are presented and discussed. Special attention is paid to the various Ti-based catalytic systems used in these processes

[1]   Goyal, R.; Singh, O.; Agrawal, A.; Samanta, Ch.; Sarkar, B. Advantages and Limitations of Catalytic Oxidation with Hydrogen Peroxide: From Bulk Chemicals to Lab Scale Process. Catal. Rev. 2022, 64, 229–285. https://doi.org/10.1080/01614940.2020.1796190

[2] Oyama, S.T.; Hightower, J.W. Catalytic Selective Oxidation. ACS Symp. Series 1993, 523. xiii–xiv. https://doi.org/10.1021/bk- 1993-0523.pr001

[3]   Anastas, P.T.; Warner, J.C. Principles of Green Chemistry, In Green Chemistry: Theory and Practice; Oxford University Press, 1998; pp 29–56.

[4]   Thénard, L.J. Observations sur des nouvelles combinaisons entre l’oxigène et divers acides. Annales de chimie et de physique, 2nd series 1818, 8, 306–312.

[5]   Campos-Martin, J. M.; Blanco-Brieva, G.; Fierro, J. L.G. Hydrogen Peroxide Synthesis: An Outlookbeyond the Anthraquinone Process. Angew. Chem. Int. Ed. 2006, 45, 6962–6984. https://doi.org/10.1002/anie.200503779

[6]   Goor, G.; Glenneberg, J.; Jacobi, S. Hydrogen Peroxide Ullmann’s Encyclopedia of Industrial Chemistry; Wiley– VCH Verlag GmbH & Co. KGaA, 2002.

[7]   Jia, X.; Sun, F.; Fei, Y.; Jin, M.; Zhang, F.; Xu, W.; Shi, N.; Lv, X. Explosion Characteristics of Mixtures Containing Hydrogen Peroxide and Working Solution in the Anthraquinone Route to Hydrogen Peroxide. PSEP 2018, 119, 218–222. https://doi.org/10.1016/j.psep.2018.08.007

[8]    https://thundersaidenergy.com/downloads/hydrogen-peroxide-production-costs/ (accesses 2024-10-15).

[9]   Ren, M.-G.; Mao, M.; Duan, X.-Y.; Song, Q.H. Hydrogen Peroxide Synthesis by Direct Photoreduction of 2- Ethylanthraquinone in Aerated Solutions. J. Photochem. Photobiol. A: Chem. 2011, 217, 164–168.https://doi.org/10.1016/j.jphotochem.2010.10.004

[10] Qu, S.; Wu, H.; Ng, Y.H. Clean Production of Hydrogen Peroxide: A Heterogeneous Solar-Driven Redox Process. Adv. Energy Mater. 2023, 13, 2301047. https://doi.org/10.1002/aenm.202301047

[11] Kopacz, W.; Okninski, A.; Kasztankiewicz, A.; Nowakowski, P.; Rarata, G.; Maksimowski. P. Hydrogen Peroxide – A Promising Oxidizer for Rocket Propulsion and its Application in Solid Rocket Propellants. FirePhysChem 2022, 2, 56–66. https://doi.org/10.1016/j.fpc.2022.03.009

[12] Cavani, F.; Teles, J. H. Sustainability in Catalytic Oxidation: An Alternative Approach or a Structural Evolution? ChemSusChem 2009, 2, 508–534. https://doi.org/10.1002/cssc.200900020

[13] Zhang, S.; Wang, X.; Li, Q.; Yang, J. Oxidative Desulfurization of Dibenzothiophene over V-Mo co-Doped Akageneite. J. Environ. Chem. Eng. 2024, 12, 114267. https://doi.org/10.1016/j.jece.2024.114267

[14] Golchoubian, H.; Hosseinpoor, F. Effective Oxidation of Sulfides to Sulfoxides with Hydrogen Peroxide under Transition- Metal-Free Conditions. Molecules 2007, 12, 304–311. https://doi.org/10.3390/12030304

[15] Lai, S.K.C.; Lam, K.; Chu, K.M.; Wong, B.C.; Hui, W.M.; Hu W.H.; Lau, G.K.; Wong, W.M.; Yuen, M.F.; Chan, A.O.; et al. Lansoprazole for the Prevention of Recurrences of Ulcer Complications from Long-Term Low-Dose Aspirin Use. New Engl. J. Med. 2002, 346, 2033–2038.https://doi.org/10.1056/NEJMoa012877

[16] Sovova, M.; Sova, P. Pharmaceutical Significance of Allium sativum L. Antifungal Effects. Ceska Slov. Farm. 2003, 52, 82–87.

[17] Kotelanski, B.; Grozmann, R.J.; Cohn, J.N.C. Positive Inotropic Effect of Oral Esproquin in Normal Subjects. Pharmacol.Ther. 1973, 14, 427–433. https://doi.org/10.1002/cpt1973143427

[18] Schmied, R.; Wang, G.X.; Korth, M. Intracellular Na+ Activity and Positive Inotropic Effect of Sulmazole in Guinea Pig Ventricular Myocardium. Comparison with a Cardioactive Steroid. Circ. Res. 1991, 68, 597–604.https://doi.org/10.1161/01.RES.68.2.597

[19] Nieves, A.V.; Lang, A.E. Treatment of Excessive Daytime Sleepiness in Patient with Parkinson’s Disease with Modafinil. Clin. Neuropharmacol. 2002, 25, 111–114. https://doi.org/10.1097/00002826-200203000-00010

[20] Padmanabhan, S.; Lavin, R.C.; Durant, G.J. Asymmetric Synthesis of a Neuroprotective and Orally Active N-Methyl-D- aspartate Receptor Ion-Channel Blocker, CNS 5788. Tetrahedron: Asymmetr. 2000, 11, 3455–3645. https://doi.org/10.1016/S0957-4166(00)00328-1

[21] Chakrabarty, S.; Upadhyay, P.; Chakma, S. Experimental and Theoretical Study of Deep Oxidative Desulfurization of Dibenzothiophene Using Oxalate-Based Catalyst. Ultrason.Sonochem. 2021, 75, 105580.https://doi.org/10.1016/j.ultsonch.2021.105580

[22] Radko, M.; Kowalczyk, A.; Bidzińska, E.; Witkowski, S.; Górecka, S.; Wierzbicki, D.; Pamin, K.; Chmielarz, L. Titanium Dioxide Doped with Vanadium as Effective Catalyst for Selective Oxidation of Diphenyl Sulfide to Diphenyl Sulfonate. J. Therm. Anal. Calorim. 2018, 132, 1471–1480. https://doi.org/10.1007/s10973-018-7119-9

[23] Skolia, E.: Gkizis, P.L.; Nikitas, N.F.; Kokotos, Ch.G. Photochemical Aerobic Oxidation of Sulfides to Sulfoxides: The Crucial Role of Wavelength irradiation. Green Chem. 2022, 24, 4108–4118. https://doi.org/10.1039/d2gc00799a

[24] Kokare, A.M.; Sutar, R.S.; Deshmukh, S.G.; Xing, R.; Liu, S.; Latthe, S.S. ODS – Modified TiO2 Nanoparticles for the Preparation of Self-Cleaning Superhydrophobic Coating. AIP Conf. Proc. 2018, 1953, 100068. https://doi.org/10.1063/1.5033004

[25]  Yang, G.; Han, J.; Liu, Y.; Qiu, Z.; Chen, X. The Synthetic Strategies of Hierarchical TS-1 Zeolites for the Oxidative Desulfurization Reactions. Chinese J. Chem. Eng. 2020, 28, 2227–2234. https://doi.org/10.1016/j.cjche.2020.06.026

[26] Rivoira, L.P.; Vallés, V.A.; Ledesma, B.C.; Ponte, M.V.; Martínez, M.L.; Anunziata, O.A.; Beltramone, A.R. Sulfur Elimination by Oxidative Desulfurization with Titanium-Modified SBA-16. Catal. Today 2016, 271, 102–113.https://doi.org/10.1016/j.cattod.2015.07.055

[27] Ali, S.H.; Mohammed, S.S.; Al-Dokheily, M.E.; Algharagholy,L. Photocatalytic Activity of Defective TiO2-x for Water Treatment/Methyl Orange Dye Degradation. Chem. Chem. Technol. 2022, 16, 639–651. https://doi.org/10.23939/chcht16.04.639

[28] Radko, M.; Kowalczyk, A.; Mikrut, P.; Witkowski, S.; Mozgawa, W.; Macyk, W.; Chmielarz, L. Catalytic and Photocatalytic Oxidation of Diphenyl Sulfide to Diphenyl Sulfoxide over Titanium Dioxide Doped with Vanadium, Zinc, and Tin. RSC Adv. 2020, 10, 4023-4031. https://doi.org/10.1039/C9RA09903D

[29] Mikrut, P.; Święs, A.; Kobielusz, M.; Chmielarz, L.; Macyk,Selective and Efficient Catalytic and Photocatalytic Oxidation of Diphenyl Sulfide to Sulfoxide and Sulfone: The Role of Hydrogen Peroxide and TiO2 Polymorph. RSC Adv. 2022, 12, 1862–1870. https://doi.org/10.1039/d1ra08364c

[30] Ramos-Luna, M.A.; Cedeño-Caero, L. Effect of Sulfates and Reduced-Vanadium Species on Oxidative Desulfurization (ODS) with V2O5/TiO2. Catal. Ind. Eng. Chem. Res. 2011, 50, 2641–2649. https://doi.org/10.1021/ie1006728

[31] Al-Maksoud, W.; Daniele, S.; Sorokin, A.B. Practical Oxidation of Sulfides to Sulfones by H2O2 Catalysed by Titanium Catalyst. Green Chem. 2008, 10, 447–451. https://doi.org/10.1039/B717696A

[32] Frank, W.C. Surprising Stereoselectivity in the Payne Epoxidation of Terpinen-4-ol with Acetonitrile/Hydrogen Peroxide. Tetrahedron: Asymmetry 1998, 9, 3745. https://doi.org/10.1016/S0957-4166(98)00407-8

[33] Pillai, U.R.; Sahle-Demessie, E. Sn-Exchanged Hydrotalcites as Catalysts for Clean and Selective Baeyer–Villiger Oxidation of Ketones Using Hydrogen Peroxide. J. Mol. Catal. A: Chem. 2003, 191, 93–100. https://doi.org/10.1016/S1381-1169(02)00347-3

[34] Payne, G.B.; Deming, P.H.; Williams, P.H. Reactions of Hyd- rogen Peroxide. VII. Alkali-Catalyzed Epoxidation and Oxidation Using a Nitrile as co-Reactant. J. Org. Chem. 1961, 26, 659–663.

[35] Robinson, D.J.; Davies, L.; McGuire, N.; Lee, D.F.; McMorn, P.; Willock, D.J.; Watson, G.W.; Bulman Page, P.C.; Bethell, D.; Hutchings, G.J. Oxidation of Thioethers and Sulfoxides with Hydrogen Peroxide Using TS-1 as Catalyst. Phys. Chem. Chem. Phys. 2000, 2, 1523–1529. https://doi.org/10.1039/A907605K

 [36] Radko, M.; Rutkowska, M.; Kowalczyk, A.; Mikrut, P.; Díaz, U.; Palomares, A.E.; Macyk, W.; Chmielarz, L. Catalytic Oxidation of Organic Sulfides by H2O2 in the Presence of Titanosilicate Zeolites. Micropor. Mesopor. Mater. 2020, 302, 110219. https://doi.org/10.1016/j.micromeso.2020.110219

[37] Martausová, I.; Spustová, D.; Cvejn, D.; Martaus, A.; Lacný, Z.; Přech, J. Catalytic activity of Advanced Titanosilicate Zeolites in Hydrogen Peroxide S-Oxidation of Methyl(phenyl)sulfide. Catal. Today 2019, 324, 144–153. https://doi.org/10.1016/j.cattod.2018.07.003

[38] Přech, J.; Morris, R.E.; Čejka, J. Selective Oxidation of Bulky Organic Sulfides over Layered Titanosilicate Catalysts. Catal. Sci. Technol. 2016, 6, 2775. https://doi.org/10.1039/c5cy02083b

[39] Dubiel, W.; Kobielusz, M.; Mróz, K.; Mazur, M.; Ang, L.; Chmielarz, L.; Macyk, W.; Roth, W.J.; Čejka, J.; Gil, B. House-of- Cards Composites of MWW Monolayers and TiO2 Nanoparticles with (Photo)catalytic Activity. Appl. Mater. Today 2024, 41, 102473. https://doi.org/10.1016/j.apmt.2024.102473

[40] Dubiel, W.; Kowalczyk, A.; Jankowska, A.; Michalik, M.; Mozgawa, W.; Kobielusz, M.; Macyk, W.; Chmielarz, L. Silica- Titania Mesoporous Silicas of MCM-41 Type as Effective Catalysts and Photocatalysts for Selective Oxidation of Diphenyl Sulfide by H2O2. Green Proc. Synt. 2023, 12, 20230052.https://doi.org/10.1515/gps-2023-0052

[41] Juan, Z.; Dishun, Z.; Liyan, Y.; Yongbo, L. Photocatalytic Oxidation Dibenzothiophene Using TS-1. Chem. Eng. J. 2010, 156, 528–531. https://doi.org/10.1016/j.cej.2009.04.032

[42] Lee, G.D.; Jung, S.K.; Jeong, Y.J.; Park, J.H.; Lim, K.T.; Ahn B.H.; Hong, S.S. Photocatalytic Decomposition of 4-Nitrophenol over Titanium Silicalite (TS-1) Catalysts. Appl. Catal. A-Gen. 2003, 239, 197–208. https://doi.org/10.1016/S0926-860X(02)00389-7

[43] Howe, R.F.; Krisnandi, Y.K. Photoreactivity of ETS-10. Chem. Commun. 2001, 1588–1589. https://doi.org/10.1039/B104870H

[44] Usseglio, S.; Calza, P; Damin, A.; Minero, C.; Bordiga, S.; Lamberti, C. Tailoring the Selectivity of Ti-Based Photocatalysts (TiO2 and Microporous ETS-10 and ETS-4) by Playing with  Surface Morphology and Electronic Structure. Chem. Mater. 2006, 18, 3412–3424. https://doi.org/10.1021/cm052841g

[45] Yan, Y.; Li, C.; Wu, Y.; Gao, J.; Zhang Q. From Isolated Ti- oxo Clusters to Infinite Ti-oxo Chains and Sheets: Recent Advances in Photoactive Ti-Based MOFs. J. Mater. Chem. A. 2020, 8, 15245–15270. https://doi.org/10.1039/D0TA03749D

[46] Huang, F.; Hao, H.; Sheng, W.; Dong, X.; Lang, X. Cooperative Photocatalysis of Dye–Ti-MCM-41 with Trimethylamine for Selective Aerobic Oxidation of Sulfides Illuminated by Blue Light. J. Colloid. Interface. Sci. 2023, 630, 921–930. https://doi.org/10.1016/j.jcis.2022.10.052

[47] Dubiel, W.; Tran, L.B.; Jankowska, A.; Kowalczyk, A.; Michalik, M.; Mozgawa, W.; Mazur, M; Nguyen, N.H.; Chmielarz, L. Synergistic Catalytic Effect of Titanium and Iron Incorporated to Spherical MCM-41 in Selective Catalytic Oxidation of Diphenyl Sulfide with H2O2. Polyhedron 2024, 262, 117158. https://doi.org/10.1016/j.poly.2024.117158

[48] Kim, H.H.; Lee, H.; Lee, D.; Ko, Y.J.; Woo, H.; Lee, J.; Lee, Ch.; Le-Tuan Pham, A. Activation of Hydrogen Peroxide by a Titanium Oxide-Supported Iron Catalyst: Evidence for Surface Fe(IV) and its Selectivity. Environ. Sci. Technol. 2020, 54, 15424– 15432. https://doi.org/10.1021/acs.est.0c04262

[49] Chervinskyy, T.; Grynyshyn, O.; Prokop, R.; Korchak, B. Study on the Purification Process of Used Motor Oils in the Presence of Crystalline Urea. Chem. Chem. Technol. 2023, 17, 460– 468. https://doi.org/10.23939/chcht17.02.460

[50] Yarmola, T.; Topilnytskyy, P.; Romanchuk, V. High-viscosity Crude Oil. A Review. Chem. Chem. Technol. 2023, 17, 195–202. https://doi.org/10.23939/chcht17.01.195

[51] Cao, Y.; Wang, H.; Ding, R.; Wang. L.; Liu, Z.; Lv, B. Highly Efficient Oxidative Desulfurization of Dibenzothiophene Using Ni Modified MoO3 Catalyst. Appl. Catal. A-Gen. 2020, 589, 117308. https://doi.org/10.1016/j.apcata.2019.117308

[52] Zhu, J.; Wu, P.; Chen, L.; He, J.; Wu, Y.; Wang, C.; Chao, Y; Lu, L.; He, M.; Zhu, W. 3D-Printing of Integrated Spheres as a Superior Support of Phosphotungstic Acid for Deep Oxidative Desulfurization of Fuel. J. Energy. Chem. 2020, 45, 91–97. https://doi.org/10.1016/j.jechem.2019.10.001

[53] Haghighi, H.; Gooneh-Farahani, S. Insights to the Oxidative Desulfurization Process of Fossil Fuels over Organic and Inorganic Heterogeneous Catalysts: Advantages and Issues. Environ. Sci. Pollution Res. 2020, 27, 39923–39945. https://doi.org/10.1007/s11356-020-10310-4

[54] Abdullah, W.N.W.; Bakar, W.A.W.A.; Ali, R.; Mokhtar, W.N.A.W.; Omar, M.F. Catalytic Oxidative Desulfurization Technology of Supported Ceria Based Catalyst: Physicochemical and Mechanistic Studies. J. Clean Prod. 2017, 162, 1455–1464. https://doi.org/10.1016/j.jclepro.2017.06.084

[55] Ribeiro, S.O.; Nogueira, L.S.; Gago, S.; Almeida, P.L.; Corvo, M.C.; De Castro, B.; Granadeiro, C.M.; Balula, S.S. Desulfurization Process Conciliating Heterogeneous Oxidation and Liquid Extraction: Organic Solvent or Centrifugation/Water? Appl. Catal. A-Gen. 2017, 542, 359–367. https://doi.org/10.1016/j.apcata.2017.05.032

[56] Javadli, R.; Klerk, A. Desulfurization of Heavy Oil. Appl. Pet- rochem. Res. 2012, 1, 3-19. https://doi.org/10.1007/s13203-012-0006-6

[57] Rajendran, A.; Cui, T.; Fan, H.; Yang, Z.; Feng, J.; Li, W. A Comprehensive Review on Oxidative Desulfurization Catalysts Targeting Clean Energy and Environment. J. Mater. Chem. A 2020, 8, 2246–2285. https://doi.org/10.1039/c9ta12555h

[58] Bian, H.; Zhang, H.; Li, D.; Duan, Z.; Zhang, H.; Zhang, S.; Xu., B. Insight into the Oxidative Desulfurization Mechanism of Aromatic Sulfur Compounds over Ti-MWW Zeolite: A Computational Study. Micropor. Mesopor. Mater. 2019, 294, 109837.  https://doi.org/10.1016/j.micromeso.2019.109837

[59] Wei, Y.; Wu. P.; Luo, J.; Dai, L.; Li, H.; Zhang, M.; Chen, L.; Wang, L.; Zhu, W.; Li, H. Synthesis of Hierarchical Porous BCN Using Ternary Deep Eutectic Solvent as Precursor and Template for Aerobic Oxidative Desulfurization. Micropor. Mesopor. Mater. 2019, 293, 109788. https://doi.org/10.1016/j.micromeso.2019.109788

[60] Sun, L.; Zhu, Z.; Su, T.; Liao, W.; Hao, D.; Chen, Y.; Zhao,  Y.; Ren, W.; Ge, H.; Lü, H. Novel Acidic Eutectic Mixture as Peroxidase Mimetics for Oxidative Desulfurization of Model Diesel. Appl. Catal. B-Environ. 2019, 255, 117747. https://doi.org/10.1016/j.apcatb.2019.117747

[61] Baradaran, S.; Sadeghi, M.T. Intensification of Diesel Oxidative Desulfurization via Hydrodynamic Cavitation. Ultrason. Sonochem. 2019, 58, 104698. https://doi.org/10.1016/j.ultsonch.2019.104698

[62] Niu, Y.; Xu, Q.; Wang, Y.; Li, Z.; Lu, J.; Ma, P.; Zhang, Ch.; Niu, J.; Wang, J. Preparation, Characterization, and Catalytic Performances of a Pyrazine Dicarboxylate-Bridging Rare-Earth- Containing Polytungstoarsenate Aggregate for Selective Oxidation of Thiophenes and Deep Desulfurization of Model Fuels. Dalton Trans. 2018, 47, 9677–9684. https://doi.org/10.1039/C8DT01243A

[63] Zuo, M.; Huang, X.; Li, J.; Chang, Q.; Duan, Y.; Yan, L.; Xiao, Z.; Mei, S.; Lu, S.; Yao, Y. Oxidative Desulfurization in Diesel via a Titanium Dioxide Triggered Thermocatalytic Mechanism. Catal. Sci. Technol. 2019, 9, 2923–2930. https://doi.org/10.1039/c9cy00298g

[64] Chen, Q.; Du, G.H.; Zhang, S.; Peng, L.M. The Structure of Trititanate Nanotubes. Acta Cryst. 2002, B58, 587–593. https://doi.org/10.1107/S0108768102009084

[65] Qiu, J.; Wang, G.; Zhang, Y.; Zeng, D.; Chen, Y. Direct Synthesis of Mesoporous H3PMo12O40/SiO2 and its Catalytic Performance in Oxidative Desulfurization of Fuel Oil. Fuel 2015, 147, 195–202. https://doi.org/10.1016/j.fuel.2015.01.064

[66] Zhu, W.S.; Xu, Y.H.; Li, H.M.; Dai, B.L.; Xu, H.; Wang, C.; Chao, Y.H.; Liu, H. Photocatalytic Oxidative Desulfurization of Dibenzothiophene Catalyzed by Amorphous TiO2 in Ionic Liquid. Korean J. Chem. Eng. 2014, 31, 211–217. https://doi.org/10.1007/s11814-013-0224-3

[67] Wang, C.; Ao, Y.H.; Wang, P.F.; Hou, J.; Qian, J. A Facile Method for the Preparation of Titania-Coated Magnetic Porous Silica and its Photocatalytic Activity under UV or Visible Light. Colloids Surf. A 2010, 360, 184–189. https://doi.org/10.1016/j.colsurfa.2010.02.030

[68]  Vu, T.H.T.; Nguyen, T.T.T.; Nguyen, P.H.T.; Do, M.H.; Au, H.T.; Nguyen, T.B.; Nguyen, D. L.; Park, J.S. Fabrication of Photocatalytic Composite of Multi-Walled Carbon Nanotubes/TiO2 and its Application for Desulfurization of Diesel. Mater. Res. Bull. 2012, 47, 308–314. https://doi.org/10.1016/j.materresbull.2011.11.016

[69] Salmasi, M.; Fatemi, S.; Mortazavi, Y. Fabrication of Promoted TiO2 Nanotubes with Superior Catalytic Activity against TiO2 Nanoparticles as the Catalyst of Oxi-Desulfurization Process. J. Ind. Eng. Chem. 2016, 39, 66–76. https://doi.org/10.1016/j.jiec.2016.05.011

[70] Shen, C.; Wang, Y. J.; Xu, J.H.; Luo, G.S. Oxidative Desulfurization of DBT with H2O2 Catalysed by TiO2/Porous Glass. Green Chem. 2016, 18, 771–781.https://doi.org/10.1039/C5GC01653C

[71] Sun, Y.W.; Wang, Y.J.; Lu, Y.C. Wang, T.; Luo, G.S. Subcritical Water Treatment: A Simple Method to Prepare Porous Glass with a Core–Shell Structure. J. Am. Ceram. Soc. 2008, 91, 103–109. https://doi.org/10.1111/j.1551-2916.2007.02111.x

[72]  Shen, C.; Wang, Y.J.; Xu, J.H.; Lu, Y.C.; Luo, G.S. Preparation and Ion Exchange Properties of Egg-Shell Glass Beads with Different Surface Morphologies. Particuology 2012, 10, 317–326. https://doi.org/10.1016/j.partic.2011.11.002

[73]  Shen, C.; Wang, Y.J.; Xu, J.H.; Lu, Y.C.; Luo, G.S. Porous Glass Beads as a New Adsorbent to Remove Sulfur-Containing Compounds. Green Chem. 2012, 14, 1009–1015. https://doi.org/10.1039/C2GC16559G

[74] Prech, J. Catalytic Performance of Advanced Titanosilicate Selective Oxidation Catalysts – A Review. Catal. Rev.: Sci. Eng. 2018, 60, 71. https://doi.org/10.1080/01614940.2017.1389111

[75] Du, Q.; Guo, Y.; Wu, P.; Liu, H. Synthesis of Hierarchically Porous TS-1 Zeolite with Excellent Deep Desulfurization Performance under Mild Conditions. Micropor. Mesopor. Mater. 2018, 264, 272–280. https://doi.org/10.1016/j.micromeso.2018.01.015

[76] Shi, C.; Wang, W.; Liu, N.; Xu, X.; Wang, D.; Zhang, M.; Sun, P.; Chen, T. Low Temperature Oxidative Desulfurization with Hierarchically Mesoporous Titaniumsilicate Ti-SBA-2 Single Crystals. Chem. Commun. 2015, 51, 11500-11503. https://doi.org/10.1039/C5CC04014K

[77] Lv, G.; Deng, S.; Zhai, Y.; Zhu, Y.; Li, H.; Wang, F.; Zhang, P123 Lamellar Micelle-Assisted Construction of Hierarchical TS-1 Stacked Nanoplates with Constrained Mesopores for Enhanced Oxidative Desulfurization. Appl. Catal. A-Gen. 2018, 567, 28–35. https://doi.org/10.1016/j.apcata.2018.09.009

[78] Du, S.; Sun, Q.; Wang, N.; Chen, X.; Jia, M.; Yu, J. Synthesis of Hierarchical TS-1 Zeolites with Abundant and Uniform Intracrystalline Mesopores and their Highly Efficient Catalytic Performance for Oxidation Desulfurization. J. Mater. Chem. A 2017, 5, 7992–7998. https://doi.org/10.1039/C6TA10044A

[79] Savić, S.M.; Vojisavljević, K.; Počuča-Nešić, M.; Živojević, K.; Mladenović, M.; Knežević, N.Ž. Hard Template Synthesis of Nanomaterials Based on Mesoporous Silica. Metall. Mater. Eng. 2018, 24, 225–241. https://doi.org/10.30544/400

[80] Fang, Y.; Hu, H.; Mesoporous TS-1: Nanocasting Synthesis with CMK-3 as Template and its Performance in Catalytic Oxidation of Aromatic Thiophene. Catal. Commun. 2007, 8, 817–820, https://doi.org/10.1016/j.catcom.2006.09.018

[81] Bai, R.; Sun, Q.; Song, Y.; Wang, N.; Zhang, T.; Wang, F.; Zou, Y.; Feng, Z.; Miao, S.; Yu, J. Intermediate-Crystallization Promoted Catalytic Activity of Titanosilicate Zeolites. J. Mater. Chem. A 2018, 6, 8757–8762. https://doi.org/10.1039/c8ta01960f

[82] Du, S.; Chen, X.; Sun, Q.; Wang, N.; Jia, M.; Valtchev, V.; Yu, J. A Non-Chemically Selective Top-Down Approach Towards the Preparation of Hierarchical TS-1 Zeolites with Improved Oxidative Desulfurization Catalytic Performance. Chem. Commun. 2016, 52, 3580–3583. https://doi.org/10.1039/c5cc10232d

[83] Gao, G.; Cheng, S.; An, Y.; Si, X.; Fu, X.; Liu, Y.; Zhang, H.; Wu, P.; He, M-Y. Oxidative Desulfurization of Aromatic Sulfur Compounds over Titanosilicates. ChemCatChem 2010, 2, 459–466. https://doi.org/10.1002/cctc.200900073

[84] Si, X.; Cheng, S.; Lu, Y.; Gao, G.; He, M-Y. Oxidative Desulfurization of Model Oil over Au/Ti-MWW. Catal. Lett. 2008, 122, 321–324. https://doi.org/10.1007/s10562-007-9380-6

[85] Nurwita, A.; Trejda, M. The Effect of Mesoporous Structure of the Support on the Oxidation of Dibenzothiophene. Int. J. Mol. Sci. 2023, 24, 16957. https://doi.org/10.3390/ijms242316957

[86] Ren, X.; Miao, G.; Xiao, Z.; Ye, F.; Li, Z.; Wang, H.; Xiao, J. Catalytic Adsorptive Desulfurization of Model Diesel Fuel Using TiO2/SBA-15 under Mild Conditions. Fuel 2016, 174, 118–125. https://doi.org/10.1016/j.fuel.2016.01.093

[87] Crucianelli, M.; Bizzarri, B.M.; Saladino, R. SBA-15 Anchored Metal Containing Catalysts in the Oxidative Desulfurization Process. Catalysts 2019, 9, 984. https://doi.org/10.3390/catal9120984

[88] Chica, A.; Corma, A.; Domine, ME. Catalytic Oxidative Desulfurization (ODS) of Diesel Fuel on a Continuous Fixed-Bed Reactor. J. Catal. 2006, 242, 299–308. https://doi.org/10.1016/j.jcat.2006.06.013

[89] Farghadani, M.H.; Mahdavi, V. Novel Synthesis of Highly Dispersed Molybdenum Oxide over Nanorods Cryptomelane Octahedral Manganese Oxide Molecular Sieve (MoOx/Nanorod- OMS-2) as a High Performance Catalyst for Oxidative Desulfurization Process. Fuel Proc. Technol. 2022, 236, 107415. https://doi.org/10.1016/j.fuproc.2022.107415

[90] Liu, L.; Zhang, Y.; Tan, W. Ultrasound-Assisted Oxidation of Dibenzothiophene with Phosphotungstic Acid Supported on Activated Carbon. Ultrason. Sonochem. 2024, 21, 970–974. https://doi.org/10.1016/j.ultsonch.2013.10.028

[91] Kompanijec, V.; Repa, G.M.; Fredin, L.A.; Swierk, J.R. Controlling Product Selectivity in Oxidative Desulfurization Using an Electrodeposited Iron Oxide Film. Dalton Trans. 2023, 52, 9646–9654. https://doi.org/10.1039/D3DT01074K