Пластмаси на основі нафти міцні, гнучкі, дешеві та широкодоступні, тому мають усе більший попит серед населення Землі, яке постійно зростає. Однак оскільки звичайний пластик (особливо одноразові вироби та матеріали) не є біорозкладним, він після закінчення терміну експлуатації створює постійну загрозу довкіллю, зокрема здоров’ю тварин і людей. За оцінками, щорічно в навколишнє середовище потрапляє близько 20 мільйонів метричних тонн одноразового пластикового сміття. Незважаючи на нещодавні глобальні ініціативи, показники переробки залишаються низькими через нерозвинену інфраструктуру та відсутність глобальної стандартизації. Лише близько 9% пластикових відходів було перероблено в усьому світі, переважно шляхом механічної переробки, і близько 12% спалюється (четвертинна переробка). Близько 79% річного обсягу виробництва пластику на основі нафти, виготовленого як у країнах, що розвиваються, так і в розвинених країнах, потрапляє на звалища та в океани. Будучи виготовленим з різноманітних природних відновлюваних полімерних ресурсів, біопластик як стійка альтернатива має кілька переваг перед своїми аналогами на основі викопної сировини. Зокрема, біопластики сприяють зниженню викидів вуглецю, можуть мати цінні й унікальні термомеханічні і фізичні властивості та продуктивність; вони є універсальними, енергоефективними та, що найважливіше, часто мають властиву біорозкладаність. Цей огляд присвячений біопластикам з окремих біополімерів рослинного походження – целюлози, крохмалю (та їхній похідних) і рослинних білків. Оцінено хімізм, переваги та проблеми, а також деякі шляхи застосування таких полімерних матеріалів.
- [1] Feldman, D. Polymer History. Des. Monomers Polym. 2008, 11, 1–15. https://doi.org/10.1163/156855508X292383
- [2] Kazemi, M.; Fini, E.H. State of the Art in the Application of Functionalized Waste Polymers in the Built Environment. Resour. Conserv. Recycl. 2022, 177, 105967. https://doi.org/10.1016/j.resconrec.2021.105967
- [3] Ilyas, M.; Ahmad, W.; Khan, H.; Yousaf, S.; Khan, K.; Nazir, S. Plastic Waste as a Significant Threat to Environment – A Systematic Literature Review. Rev. Environ. Health 2018, 33, 383–406. https://doi.org/10.1515/reveh-2017-0035
- [4] Laskar, N.; Kumar, U. Plastics and Microplastics: A Threat to Environment. Environ. Technol. Innov. 2019, 14, 100352. https://doi.org/10.1016/j.eti.2019.100352
- [5] Geyer, R.; Jambeck, J.R.; Law, K.L. Production, Use, and Fate of All Plastics Ever Made. Sci. Adv. 2017, 3, e1700782. https://doi.org/10.1126/sciadv.1700782
- [6] Plastics Europe - the Facts 2021. https://plasticseurope.org/knowledge-hub/plastics-the-facts-2021/ (accessed 2025-01-25).
- [7] Ferreira-Filipe, D.A.; Paço, A.; Duarte, A.C.; Rocha- Santos, T.; Silva, A.L.P. Are Biobased Plastics Green Alternatives?—A Critical Review. Int. J. Environ. Res. Public Health 2021, 18, 7729. https://doi.org/10.3390/ijerph18157729
- [8] Tokiwa, Y.; Calabia, B.P.; Ugwu, C.U.; Aiba, S. Biodegradability of Plastics. Int. J. Mol. Sci. 2009, 10, 3722–3742. https://doi.org/10.3390/ijms10093722
- [9] Goswami, P.; O’Haire, T. Developments in the Use of Green (Biodegradable), Recycled and Biopolymer Materials in Technical Nonwovens. Adv. Tech. Nonwovens 2016, 97–114. https://doi.org/10.1016/B978-0-08-100575-0.00003-6
- [10] Agency, U.S.E.P. Plastics: Material-Specific Data. https://www.epa.gov/facts-andfigures-about-materials-waste-and- recycling/plastics-material-specific-data (accessed 2025-02-10).
- [11] Zimmermann, L.; Bartosova, Z.; Braun, K.; Oehlmann, J.; Völker, C.; Wagner, M. Plastic Products Leach Chemicals That Induce In VitroToxicity under Realistic Use Conditions. Environ. Sci. Technol. 2021, 55, 11814–11823.https://doi.org/10.1021/acs.est.1c01103
- [12] Zettler, E.R.; Mincer, T.J.; Amaral-Zettler, L.A. Life in the “Plastisphere”: Microbial Communities on Plastic Marine Debris. Environ. Sci. Technol. 2013, 47, 7137–7146. https://doi.org/10.1021/es401288x
- [13] Schyns, Z.O.G.; Shaver, M.P. Mechanical Recycling of Packaging Plastics: A Review. Macromol. Rapid Commun. 2021, 42, 2000415. https://doi.org/10.1002/marc.202000415
- [14] Verma, R.; Vinoda, K.S.; Papireddy, M.; Gowda, A.N.S. Toxic Pollutants from Plastic Waste - A Review. Procedia Environ. Sci. 2016, 35, 701–708.https://doi.org/10.1016/j.proenv.2016.07.069
- [15] Rosenboom, J.G.; Langer, R.; Traverso, G. Bioplastics for a Circular Economy. Nat. Rev. Mater. 2022, 7, 117–137. https://doi.org/10.1038/s41578-021-00407-8
- [16] Shah, M.; Rajhans, S.; Pandya, H.A.; Mankad, A.U. Bioplastic for Future: A Review Then and Now. World J. Adv. Res. Rev. 2021, 9, 056-067.https://doi.org/10.30574/wjarr.2021.9.2.0054
- [17] Bhagwat, G.; Gray, K.; Wilson, S.P.; Muniyasamy, S.; Vincent, S.G.T.; Bush, R.; Palanisami, T. Benchmarking Bioplastics: A Natural Step Towards a Sustainable Future. J. Polym. Environ. 2020, 28, 3055–3075. https://doi.org/10.1007/s10924-020-01830-8
- [18] Storz, H.; Vorlop, K.-D. Bio-Based Plastics: Status, Challenges and Trends. Landbauforsch –Appl. Agric. Forestry Res. 2013, 63, 321–332. https://doi.org/10.3220/LBF_2013_321-332
- [19] Momani, B. Assessment of the Impacts of Bioplastics: Energy Usage, Fossil Fuel Usage, Pollution, Health Effects, Effects on the Food Supply, and Economic Effects Compared to Petroleum Based Plastics. Worcester Polytechnic Institute 2009. https://digital.wpi.edu/concern/student_works/qv33rw93b?locale= en
- [20] Silva, R.R.A.; Marques, C.S.; Arruda, T.R.; Teixeira, S.C.; de Oliveira, V.T. Biodegradation of Polymers: Stages, Measurement, Standards and Prospects. Macromol 2023, 3, 371–399. https://doi.org/10.3390/macromol3020023
- [21] Nanda, S.; Patra, B.R.; Patel, R.; Bakos, J.; Dalai, A.K. Innovations in Applications and Prospects of Bioplastics and Biopolymers: A Review. Environ. Chem. Lett. 2022, 20, 379–395. https://doi.org/10.1007/s10311-021-01334-4
- [22] Knoblauch, C.; Beer, C.; Liebner, S.; Grigoriev, M.N.; Pfeiffer, E.-M. Methane Production as Key to the Greenhouse Gas Budget of Thawing Permafrost. Nat. Clim. Change 2018, 8, 309– 312. https://doi.org/10.1038/s41558-018-0095-z
- [23] Rujnić-Sokele, M.; Pilipović, A. Challenges and Opportunities of Biodegradable Plastics: A Mini Review. Waste Manag. Res. 2017, 35, 132–140.https://doi.org/10.1177/0734242X16683272
- [24] Pathak, S.; Sneha, C.L.R.; Mathew, B.B. Bioplastics: Its Timeline Based Scenario & Challenges. J. Polym. Biopolym.Phys. Chem. 2014, 2, 84-90. https://doi.org/10.12691/jpbpc-2-4-5
- [25] Brockhaus, S.; Petersen, M.; Kersten, W. A Crossroads for Bioplastics: Exploring Product Developers' Challenges to Move beyond Petroleum-Based Plastics. J. Cleaner Prod. 2016, 127, 84–95. https://doi.org/10.1016/j.jclepro.2016.04.003
- [26] Jabeen, N.; Majid, I.; Nayik, G.A. Bioplastics and Food Packaging: A Review. Cogent Food Agric. 2015, 1, 1117749. https://doi.org/10.1080/23311932.2015.1117749
- [27] Hierarchical Materials. In Modern Inorganic Synthetic Chemistry, 2nd ed.; Xu, R.; Xu, Y., Eds.; Elsevier, 2017; pp 545– 574.
- [28] Mohammed, A.S.A.; Naveed, M.; Jost, N. Polysaccharides; Classification, Chemical Properties, and Future Perspective Applications in Fields of Pharmacology and Biological Medicine (A Review of Current Applications and Upcoming Potentialities). J. Polym. Environ. 2021, 29, 2359–2371. https://doi.org/10.1007/s10924-021-02052-2
- [29] Díaz-Montes, E. Polysaccharides: Sources, Characteristics, Properties, and Their Application in Biodegradable Films. Polysaccharides 2022, 3, 480–501. https://doi.org/10.3390/polysaccharides3030029
- [30] Wassie, T.; Niu, K.; Xie, C.; Wang, H.; Xin, W. Extraction Techniques, Biological Activities and Health Benefits of Marine Algae Enteromorpha Prolifera Polysaccharide. Front. Nutr. 2021, 8, 747928. https://doi.org/10.3389/fnut.2021.747928
- [31] Huang, X.; Ai, C.; Yao, H.; Zhao, C.; Xiang, C.; Hong, T.; Xiao, J. Guideline for the Extraction, Isolation, Purification, and Structural Characterization of Polysaccharides from Natural Resources. eFood 2022, 3, e37. https://doi.org/10.1002/efd2.37
- [32] Wedamulla, N.E.; Wijesinghe, W.A.J.P. Application of Polysaccharides in Food Technology: A Review. Trends Carbohydr. Res. 2021, 13, 35–49. https://www.researchgate.net/publication/353924093_Application_of_Polysaccharides_in_Food_Technology_A_Review
- [33] Yao, Y.; Xu, B. Skin Health Promoting Effects of Natural Polysaccharides and Their Potential Application in the Cosmetic Industry. Polysaccharides 2022, 3, 818–830.https://doi.org/10.3390/polysaccharides3040048
- [34] Muñoz-Gimena, P.F.; Oliver-Cuenca, V.; Peponi, L.; López, D. A Review on Reinforcements and Additives in Starch- Based Composites for Food Packaging. Polymers 2023, 15, 2972. https://doi.org/10.3390/polym15132972.
- [35] Jiang, T.; Duan, Q.; Zhu, J.; Liu, H.; Yu, L. Starch-Based Biodegradable Materials: Challenges and Opportunities. Adv. Ind. Eng. Polym. Res. 2020, 3, 8–18. https://doi.org/10.1016/j.aiepr.2019.11.003
- [36] Apriyanto, A.; Compart, J.; Fettke, J. A Review of Starch, a Unique Biopolymer – Structure, Metabolism and in Planta Modifications. Plant Sci. 2022, 318, 111223. https://doi.org/10.1016/j.plantsci.2022.111223
- [37] Zhang, Y.; Rempel, C.; Liu, Q. Thermoplastic Starch Processing and Characteristics—A Review. Crit. Rev. Food Sci. Nutr. 2014, 54, 1353–1370.https://doi.org/10.1080/10408398.2011.636156
- [38] Abe, M.M.; Martins, J.R.; Sanvezzo, P.B.; Macedo, J.V.; Branciforti, M.C.; Halley, P.; Botaro, V.R.; Brienzo, M. Advantages and Disadvantages of Bioplastics Production from Starch and Lignocellulosic Components. Polymers 2021, 13, 2484. https://doi.org/10.3390/polym13152484
- [39] Fedoryshyn, O.; Chervetsova, V.; Yaremkevych, O.; Skril, Yu.; Khomyak, S.; Kohut A. Physico-Chemical and Microbiological Characterization of Starch-Based Biodegradable Films. Chem. Chem. Technol. 2024, 18, 417–425. https://doi.org/10.23939/chcht18.03.417
- [40] Lin, D.; Zhou, W.; Zhao, J.; Lan, W.; Chen, R.; Li, Y.; Xing, B.; Li, Z.; Xiao, M.; Wu, Z. et al. Study on the Synthesis and Physicochemical Properties of Starch Acetate with Low Substitution under Microwave Assistance. Int. J. Biol. Macromol. 2017, 103, 316–326.https://doi.org/10.1016/j.ijbiomac.2017.05.056
- [41] Cuenca, P.; Ferrero, S.; Albani, O. Preparation and Characterization of Cassava Starch Acetate with High Substitution Degree. Food Hydrocolloids 2020, 100, 105430. https://doi.org/10.1016/j.foodhyd.2019.105430
- [42] Guan, J.; Hanna, M.A. Extruding Foams from Corn Starch Acetate and Native Corn Starch. Biomacromolecules 2004, 5, 2329–2339. https://doi.org/10.1021/bm049512m
- [43] Chan, H.T.; Bhat, R.; Karim, A.A. Physicochemical and Functional Properties of Ozone-Oxidized Starch. J. Agric. Food Chem. 2009, 57, 5965–5970. https://doi.org/10.1021/jf9008789
- [44] Zhang, Y.-R.; Wang, X.-L.; Zhao, G.-M.; Wang, Y.-Z.Preparation and Properties of Oxidized Starch with High Degree of Oxidation. Carbohydr. Polym. 2012, 87, 2554–2562. https://doi.org/10.1016/j.carbpol.2011.11.036
- [45] Soliman, A.A.A.; El-Shinnawy, N.A.; Mobarak, F. Thermal Behaviour of Starch and Oxidized Starch. Thermochim. Acta 1997, 296, 149–153. https://doi.org/10.1016/s0040-6031(97)00040-3
- [46] Zhang, Y.-R.; Wang, X.-L.; Zhao, G.-M.; Wang, Y.-Z. Influence of Oxidized Starch on the Properties of Thermoplastic Starch. Carbohydr. Polym. 2013, 96, 358–364. https://doi.org/10.1016/j.carbpol.2013.03.093
- [47] Fu, Z.; Zhang, L.; Ren, M.-H.; BeMiller, J.N. Developments in Hydroxypropylation of Starch: A Review. Starch - Stärke 2019, 71, 1800167. https://doi.org/10.1002/star.201800167
- [48] Hung, P.V.; Morita, N. Physicochemical Properties of Hydroxypropylated and Cross-Linked Starches from A-Type and B-Type Wheat Starch Granules. Carbohydr. Polym. 2005, 59, 239–246. https://doi.org/10.1016/j.carbpol.2004.09.016
- [49] Vorwerg, W.; Dijksterhuis, J.; Borghuis, J.; Radosta, S.; Kröger, A. Film Properties of Hydroxypropyl Starch. Starch - Stärke 2004, 56, 297–306. https://doi.org/10.1002/star.200300244
- [50] Wang, X.-L.; Yang, K.-K.; Wang, Y.-Z. Properties of Starch Blends with Biodegradable Polymers. J. Macromol. Sci. Part C Polym. Rev. 2003, 43, 385–409.https://doi.org/10.1081/mc-120023911
- [51] Kaseem, M.; Hamad, K.; Deri, F. Thermoplastic Starch Blends: A Review of Recent Works. Polym. Sci. Ser. A 2012, 54, 165–176. https://doi.org/10.1134/s0965545x1202006x
- [52] Martinez Villadiego, K.; Arias Tapia, M.J.; Useche, J.; Escobar Macías, D. Thermoplastic Starch (TPS)/Polylactic Acid (PLA) Blending Methodologies: A Review. J. Polym. Environ. 2022, 30, 75–91. https://doi.org/10.1007/s10924-021-02207-1
- [53] Schwach, E.; Six, J.-L.; Avérous, L. Biodegradable Blends Based on Starch and Poly(Lactic Acid): Comparison of Different Strategies and Estimate of Compatibilization. J. Polym. Environ. 2008, 16, 286–297. https://doi.org/10.1007/s10924-008-0107-6
- [54] Abdul Khalil, H.P.S.; Chong, E.W.N.; Owolabi, F.A.T.; Asniza, M.; Tye, Y.Y.; Rizal, S.; Nurul Fazita, M.R.; Mohamad Haafiz, M.K.; Nurmiati, Z.; Paridah, M.T. Enhancement of Basic Properties of Polysaccharide-Based Composites with Organic and Inorganic Fillers: A Review. J. Appl. Polym. Sci. 2019, 136, 47251. https://doi.org/10.1002/app.47251
- [55] Xu, H.; Cheng, H.; McClements, D.J.; Chen, L.; Long, J.; Jin, Z. Enhancing the Physicochemical Properties and Functional Performance of Starch-Based Films Using Inorganic Carbon Materials: A Review. Carbohydr. Polym. 2022, 295, 119743. https://doi.org/10.1016/j.carbpol.2022.119743
- [56] Ganster, J.; Fink, H.-P. Cellulose and Cellulose Acetate. In Bio‐Based Plastics: Materials and Applications; Kabasci, S., Ed.; John Wiley & Sons, 2013; pp 35–62. https://doi.org/10.1002/9781118676646.ch3
- [57] Heinze, T. Cellulose: Structure and Properties. In Cellulose Chemistry and Properties: Fibers, Nanocelluloses and Advanced Materials; Rojas, O., Ed.; Springer, 2015. Adv. Polym. Sci. 2015, 271, 1–52. https://doi.org/10.1007/12_2015_319
- [58] Romão, S.; Bettencourt, A.; Ribeiro, I.A.C. Novel Features of Cellulose-Based Films as Sustainable Alternatives for Food Packaging. Polymers 2022, 14, 4968. https://doi.org/10.3390/polym14224968
- [59] Fischer, S.; Thümmler, K.; Volkert, B.; Hettrich, K.; Schmidt, I.; Fischer, K. Properties and Applications of Cellulose Acetate. Macromol. Symp. 2008, 262, 89–96. https://doi.org/10.1002/masy.200850210
- [60] Puls, J.; Wilson, S.A.; Hölter, D. Degradation of Cellulose Acetate-Based Materials: A Review. J. Polym. Environ. 2011, 19, 152–165. https://doi.org/10.1007/s10924-010-0258-0
- [61] Vatanpour, V.; Pasaoglu, M.E.; Barzegar, H.; Teber, O.O.; Kaya, R.; Bastug, M.; Khataee, A.; Koyuncu, I. Cellulose Acetate in Fabrication of Polymeric Membranes: A Review. Chemosphere 2022, 295, 133914.https://doi.org/10.1016/j.chemosphere.2022.133914
- [62] Abdellah Ali, S.F.; William, L.A.; Fadl, E.A. Cellulose Acetate, Cellulose Acetate Propionate and Cellulose Acetate Butyrate Membranes for Water Desalination Applications. Cellulose 2020, 27, 9525–9543. https://doi.org/10.1007/s10570- 020-03434-w
- [63] Sabde, A.D.; Trivedi, M.K.; Ramachandhran, V.; Hanra, M.S.; Misra, B.M. Casting and Characterization of Cellulose Acetate Butyrate Based UF Membranes. Desalination 1997, 114, 223–232. https://doi.org/10.1016/s0011-9164(98)00014-9
- [64] Berthumeyrie, S.; Collin, S.; Bussiere, P.-O.; Therias, S. Photooxidation of Cellulose Nitrate: New Insights into Degradation Mechanisms. J. Hazard. Mater. 2014, 272, 137–147. https://doi.org/10.1016/j.jhazmat.2014.02.039
- [65] Edge, M.; Allen, N.S.; Hayes, M.; Riley, P.N.K.; Horie, C.V.; Luc-Gardette, J. Mechanisms of Deterioration in Cellulose Nitrate Base Archival Cinematograph Film. Eur. Polym. J. 1990, 26, 623–630. https://doi.org/10.1016/0014-3057(90)90218-s
- [66] Chen, G.; Zhang, B.; Zhao, J.; Chen, H. Improved Process for the Production of Cellulose Sulfate Using Sulfuric Acid/Ethanol Solution. Carbohydr. Polym. 2013, 95, 332–337. https://doi.org/10.1016/j.carbpol.2013.03.003
- [67] Zhang, Q.; Lin, D.; Yao, S. Review on Biomedical and Bioengineering Applications of Cellulose Sulfate. Carbohydr. Polym. 2015, 132, 311–322.https://doi.org/10.1016/j.carbpol.2015.06.041
- [68] Chen, G.; Zhang, B.; Zhao, J.; Chen, H. Development and Characterization of Food Packaging Film from Cellulose Sulfate. Food Hydrocolloids 2014, 35, 476–483. https://doi.org/10.1016/j.foodhyd.2013.07.003
- [69] Nasatto, P.L.; Pignon, F.; Silveira, J.L.M.; Duarte, M.E.R.; Noseda, M.D.; Rinaudo, M. Methylcellulose, a Cellulose Derivative with Original Physical Properties and Extended Applications. Polymers 2015, 7, 777–803. https://doi.org/10.3390/polym7050777
- [70] Li, L.; Thangamathesvaran, P.M.; Yue, C.Y.; Tam, K.C.; Hu, X.; Lam, Y.C. Gel Network Structure of Methylcellulose in Water. Langmuir 2001, 17, 8062–8068. https://doi.org/10.1021/la010917r
- [71] Coughlin, M.L.; Liberman, L.; Ertem, S.P.; Edmund, J.; Bates, F. S.; Lodge, T.P. Methylcellulose Solutions and Gels: Fibril Formation and Gelation Properties. Prog. Polym. Sci. 2021, 112, 101324. https://doi.org/10.1016/j.progpolymsci.2020.101324
- [72] Ghannam, M.T.; Esmail, M.N. Rheological Properties of Carboxymethyl Cellulose. J. Appl. Polym. Sci. 1997, 64, 289–301. https://doi.org/10.1002/(sici)1097-4628(19970411)64:2<289::aid- app9>3.0.co;2-n
- [73] Benchabane, A.; Bekkour, K. Rheological Properties of Carboxymethyl Cellulose (CMC) Solutions. Colloid Polym. Sci. 2008, 286, 1173–1180. https://doi.org/10.1007/s00396-008-1882-2
- [74] Rahman, M.S.; Hasan, M.S.; Nitai, A.S.; Nam, S.;Karmakar, A.K.; Ahsan, M.S.; Shiddiky, M.J.A.; Ahmed, M.B. Recent Developments of Carboxymethyl Cellulose. Polymers 2021, 13, 1345. https://doi.org/10.3390/polym13081345
- [75] Kusuma, H.S.; Yugiani, P.; Amenaghawon, A.N.; Darmokoesoemo H. Carboxymethyl Cellulose-Blended Films from Rice Stubble as a New Potential Biopolymer Source to Reduce Agricultural Waste: A Mini Review. Chem. Chem. Technol. 2024, 18, 200–210.https://doi.org/10.23939/chcht18.02.200
- [76] Sarkar, N. Thermal Gelation Properties of Methyl and Hydroxypropyl Methylcellulose. J. Appl. Polym. Sci. 1979, 24, 1073–1087. https://doi.org/10.1002/app.1979.070240420
- [77] Akinosho, H.; Hawkins, S.; Wicker, L. Hydroxypropyl Methylcellulose Substituent Analysis and Rheological Properties. Carbohydr. Polym. 2013, 98, 276–281. https://doi.org/10.1016/j.carbpol.2013.05.081
- [78] Burdock, G.A. Safety Assessment of Hydroxypropyl Methylcellulose as a Food Ingredient. Food Chem. Toxicol. 2007, 45, 2341–2351. https://doi.org/10.1016/j.fct.2007.07.011
- [79] Ghadermazi, R.; Hamdipour, S.; Sadeghi, K.; Ghadermazi, R.; Khosrowshahi Asl, A. Effect of Various Additives on the Properties of the Films and Coatings Derived from Hydroxypropyl Methylcellulose—A Review. Food Sci. Nutr. 2019, 7, 3363–3377. https://doi.org/10.1002/fsn3.1206
- [80] Lebedev, V.; Miroshnichenko, D.; Pyshyev, S.; Kohut, A. Study of Hybrid Humic Acids Modification of Environmentally Safe Biodegradable Films Based on Hydroxypropyl Methyl Cellulose. Chem. Chem. Technol. 2023, 17, 357–364. https://doi.org/10.23939/chcht17.02.357
- [81] Davidovich-Pinhas, M.; Barbut, S.; Marangoni, A.G. The Gelation of Oil Using Ethyl Cellulose. Carbohydr. Polym. 2015, 117, 869–878. https://doi.org/10.1016/j.carbpol.2014.10.035
- [82] Ahmadi, P.; Jahanban-Esfahlan, A.; Ahmadi, A.; Tabibiazar, M.; Mohammadifar, M. Development of Ethyl Cellulose-Based Formulations: A Perspective on the Novel Technical Methods. Food Rev. Int. 2020, 38, 685–732. https://doi.org/10.1080/87559129.2020.1741007
- [83] Mahnaj, T.; Ahmed, S.U.; Plakogiannis, F.M. Characterization of Ethyl Cellulose Polymer. Pharm. Dev. Technol. 2013, 18, 982–989.https://doi.org/10.3109/10837450.2011.604781
- [84] Yang, D.; Peng, X.; Zhong, L.; Cao, X.; Chen, W.; Zhang, X.; Liu, S.; Sun, R. “Green” Films from Renewable Resources: Properties of Epoxidized Soybean Oil Plasticized Ethyl Cellulose Films. Carbohydr. Polym. 2014, 103, 198–206. https://doi.org/10.1016/j.carbpol.2013.12.043
- [85] Abdel-Halim, E.S. Chemical Modification of Cellulose Extracted from Sugarcane Bagasse: Preparation of Hydroxyethyl Cellulose. Arabian J. Chem. 2014, 7, 362–371. https://doi.org/10.1016/j.arabjc.2013.05.006
- [86] El Fawal, G.F.; Abu-Serie, M.M.; Hassan, M.A.; Elnouby, M.S. Hydroxyethyl Cellulose Hydrogel for Wound Dressing: Fabrication, Characterization and In Vitro Evaluation. Int. J. Biol. Macromol. 2018, 111, 649–659. https://doi.org/10.1016/j.ijbiomac.2018.01.040
- [87] Singh, N.K., Mishra, P.C., Singh, V.K.; Narang, K.K. Effects of Hydroxyethyl Cellulose and Oxalic Acid on the Properties of Cement. Cem. Concr. Res. 2003, 33, 1319–1329. https://doi.org/10.1016/s0008-8846(03)00060-7
- [88] Chen, C.; Huang, Y.; Zhu, C.; Nie, Y.; Yang, J.; Sun, D. Synthesis and Characterization of Hydroxypropyl Cellulose from Bacterial Cellulose. Chin. J. Polym. Sci. 2014, 32, 439–448. https://doi.org/10.1007/s10118-014-1419-8
- [89] Fortin, S.; Charlet, G. Phase Diagram of Aqueous Solutions of (Hydroxypropyl)Cellulose. Macromolecules 1989, 22, 2286–2292. https://doi.org/10.1021/ma00195a050
- [90] Werbowyj, R.S.; Gray, D.G. Liquid Crystalline Structure in Aqueous Hydroxypropyl Cellulose Solutions. Mol. Cryst. Liq. Cryst. 1976, 34, 97–103. https://doi.org/10.1080/15421407608083894
- [91] Guido, S. Phase Behavior of Aqueous Solutions of Hydroxypropyl Cellulose. Macromolecules 1995, 28, 4530–4539. https://doi.org/10.1021/ma00117a023
- [92] Xu, Q.; Chen, C.; Rosswurm, K.; Yao, T.; Janaswamy, S. A Facile Route to Prepare Cellulose-based Films. Carbohydr. Polym. 2016, 149, 274–281. https://doi.org/10.1016/j.carbpol.2016.04.114
- [93] Baghaei, B.; Skrifvars, M. All-Cellulose Composites: A Review of Recent Studies on Structure, Properties and Applications. Molecules 2020, 25, 2836. https://doi.org/10.3390/molecules25122836
- [94] Etale, A.; Onyianta, A.J.; Turner, S.R.; Eichhorn, S.J. Cellulose: A Review of Water Interactions, Applications in Composites, and Water Treatment. Chem. Rev. 2023, 123, 2016–2048. https://doi.org/10.1021/acs.chemrev.2c00477
- [95] Kalia, S.; Dufresne, A.; Cherian, B.M.; Kaith, B.S.; Avérous, L.; Njuguna, J.; Nassiopoulos, E. Cellulose-Based Bio- and Nanocomposites: A Review. Int. J. Polym. Sci. 2011, 2011, 837875. https://doi.org/10.1155/2011/837875
- [96] Swain, S.N.; Biswal, S.M.; Nanda, P.K.; Nayak, P.L. Biodegradable Soy-Based Plastics: Opportunities and Challenges. J. Polym. Environ. 2004, 12, 35–42. https://doi.org/10.1023/B:JOOE.0000003126.14448.04
- [97] Manamperi, W.A.; Espinoza-Perez, J.D.; Haagenson, D.M.; Ulven, C.A.; Wiesenborn, D.P.; Pryor, S.W. Influence of Oil Extraction Method on Properties of Canola Biodiesel, Epoxies, and Protein-Based Plastics. Ind. Crops Prod. 2015, 77, 133–138. https://doi.org/10.1016/j.indcrop.2015.08.050
- [98] Campbell, K.A.; Glatz, C.E. Mechanisms of Aqueous Extraction of Soybean Oil. J. Agric. Food Chem. 2009, 57, 10904–10912. https://doi.org/10.1021/jf902298a
- [99] Gaber, M.A.F.M.; Tujillo, F.J.; Mansour, M.P.; Juliano, P. Improving Oil Extraction from Canola Seeds by Conventional and Advanced Methods. Food Eng. Rev. 2018, 10, 198–210. https://doi.org/10.1007/s12393-018-9182-1
- [100] Anderson, T.J.; Lamsal, B.P. Zein Extraction from Corn, Corn Products, and Coproducts and Modifications for Various Applications: A Review. Cereal Chem. 2011, 88, 159–173. https://doi.org/10.1094/CCHEM-06-10-0091
- [101] Sharma, B.K.; Adhvaryu, A.; Liu, Z.; Erhan, S.Z. Chemical Modification of Vegetable Oils for Lubricant Applications. J. Am. Oil Chem. Soc. 2006, 83, 129–136. https://doi.org/10.1007/s11746-006-1185-z
- [102] Kirianchuk, V.; Demchuk, Z.; Bon, I.; Nichols, J.; Pourhashem, G.; Voronov, A.; Voronov, S.; Plant Oil-Based Latex Adhesives for Packaging Applications. Food Chemistry. Modern Methods for Production of Food, Food Additives and Packaging Materials: Book of Abstracts 2020, Lviv, Ukraine; p 13.
- [103] Heinrich, L.A. Future Opportunities for Bio-Based Adhesives – Advantages Beyond Renewability. Green Chem. 2019, 21, 1866–1888. https://doi.org/10.1039/C8GC03746A
- [104] Kumar, R.; Choudhary, V.; Mishra, S.; Varma, I.K.; Mattiason, B. Adhesives and Plastics Based on Soy Protein Products. Ind. Crops Prod. 2002, 16, 155–172. https://doi.org/10.1016/S0926-6690(02)00007-9
- [105] Tian, H.; Guo, G.; Fu, X.; Yao, Y.; Yuan, L.; Xiang, A. Fabrication, Properties and Applications of Soy-Protein-Based Materials: A Review. Int. J. Biol. Macromol. 2018, 120, 475–490. https://doi.org/10.1016/j.ijbiomac.2018.08.110
- [106] Via, B.; Hand, W.G.; Banerjee, S. Use of Soy Flour in Resin Formulations Used to Manufacture Engineered Wood Composites. US patent 2016/0264781 A1, September 15, 2016.
- [107] Riaz, M.N. Textured Soy Protein and Its Uses. Agro Food Ind. Hi Tech 2001, 12, 28–31.
- [108] Shukla, P.; Bhise, S.; Thind, S.S. Role of Biodegradable Edible Films and Coatings in Food Industry. Acta Scientific Nutritional Health 2019, 3, 138–147. https://www.actascientific.com/ASNH/pdf/ASNH-03-0261.pdf
- [109] Protein-Based Films and Coatings, 1st ed.; Gennadios, A., Ed.; CRC Press, 2002. https://doi.org/10.1201/9781420031980
- [110] Qin, Z.; Mo, L.; Liao, M.; He, H.; Sun, J. Preparation and Characterization of Soy Protein Isolate-Based Nanocomposite Films with Cellulose Nanofibers and Nano-Silica via Silane Grafting. Polymers 2019, 11, 1835. https://doi.org/10.3390/polym11111835
- [111] Xu, X.; Hu, W.; Ke, Q.; Liu, H.; Li, J.; Zhao, Y. Bio- Adhesives from Unfolded Soy Protein Reinforced by Nano- Chitosan for Sustainable Textile Industry. Text. Res. J. 2020, 90, 1094–1101. https://doi.org/10.1177/0040517519886560
- [112] Liu, R.; Liu, D.; Liu, Y.; Song, Y.; Wu, T.; Zhang, M. Using Soy Protein SiOx Nanocomposite Film Coating to Extend the Shelf Life of Apple Fruit. Int. J. Food Sci. Technol. 2017, 52, 2018–2030. https://doi.org/10.1111/ijfs.13478
- [113] Said, N.S.; Sarbon, N.M. Protein-Based Active Film as Antimicrobial Food Packaging: A Review. In Active Antimicrobial Food Packaging; Var, I., Uzunlu, S., Eds.; IntechOpen Limited, 2019. https://doi.org/10.5772/intechopen.80774
- [114] Suamir, I.N.; Rasta, I.M.; Sudirman; Tsamos, K.M. Development of Corn-Oil Ester and Water Mixture Phase Change Materials for Food Refrigeration Applications. Energy Procedia 2019, 161, 198–206. https://doi.org/10.1016/j.egypro.2019.02.082
- [115] Al-Eshaikh, M.A.; Qureshi, M.I. Evaluation of Food Grade Corn Oil for Electrical Applications. Int. J. Green Energy 2012, 9, 441–455. https://doi.org/10.1080/15435075.2011.641186
- [116] Lawton, J.W. Plasticizers for Zein: Their Effect on Tensile Properties and Water Absorption of Zein Films. Cereal Chem. 2004, 81, 1–5. https://doi.org/10.1094/CCHEM.2004.81.1.1
- [117] Emmambux, M.N.; Stading, M. In Situ Tensile Deformation of Zein Films with Plasticizers and Filler Materials. Food Hydrocolloids 2007, 21, 1245–1255. https://doi.org/10.1016/j.foodhyd.2006.09.013
- [118] Ghanbarzadeh, B.; Oromiehi, A.R. Biodegradable Biocomposite Films Based on Whey Protein and Zein: Barrier, Mechanical Properties and AFM Analysis. Int. J. Biol. Macromol. 2008, 43, 209–215. https://doi.org/10.1016/j.ijbiomac.2008.05.006
- [119] Pol, H.; Dawson, P.; Acton, J.; Ogale, A. Soy Protein Isolate/Corn-Zein Laminated Films: Transport and Mechanical Properties. J. Food Sci. 2002, 67, 212–217. https://doi.org/10.1111/j.1365-2621.2002.tb11386.x
- [120] Reddy, N.; Yang, Y. Thermoplastic Films from Plant Proteins. J. Appl. Polym. Sci. 2013, 130, 729–738. https://doi.org/10.1002/app.39481
- [121] Evans, C.D.; Manley, R.H. Solvents for Zein. Primary Solvents. Ind. Eng. Chem. 1941, 33, 1416–1417. https://doi.org/10.1021/ie50383a019
- [122] Cho, S.Y.; Lee, S.Y.; Rhee, C. Edible Oxygen Barrier Bilayer Film Pouches from Corn Zein and Soy Protein Isolate for Olive Oil Packaging. LWT Food Sci. Technol. 2010, 43, 1234– 1239. https://doi.org/10.1016/j.lwt.2010.03.014
- [123] Patnode, K.; Rasulev, B.; Voronov, A. Synergistic Behavior of Plant Proteins and Biobased Latexes in Bioplastic Food Packaging Materials: Experimental and Machine Learning Study. ACS Appl. Mater. Interfaces 2022, 14, 8384–8393. https://doi.org/10.1021/acsami.1c21650.
- [124] Patnode, K.; Demchuk, Z.; Johnson, S.; Voronov, A.; Rasulev, B. Computational Protein–Ligand Docking and Experimental Study of Bioplastic Films from Soybean Protein, Zein, and Natural Modifiers. ACS Sustainable Chem. Eng. 2021, 9, 10740–10748. https://doi.org/10.1021/acssuschemeng.1c01202