Microparticles based on natural Transcarpathian clinoptilolite (CL), its H- and Na-forms are synthesized by physicochemical modifications, in particular, heat treatment and doping with metal activators (Ag and Cu). Doping of CL samples with metal ions was carried out in two different ways: the first was to use the solid-phase extraction method under dynamic conditions followed by mechanochemical treatment, and the second was to mechanochemically treat the CL samples with Ag and Cu compounds. XRD, SEM, EDX, FTIR-, UV-Vis-, XPS spectra, dispersity, porous structure parameters and antibacterial activity of the obtained compositions were studied. Modified forms are characterized by increased dispersion, larger specific surface area, porosity, increased number of hydroxyl OH groups and siloxane bonds. The inclusion of metals in the structure of CL contributed to the formation of active red-ox centers responsible for the formation of active oxygen-containing particles that participate in the destruction of microorganisms, which significantly increases the antibacterial activity of CL. The physical stability and biotolerance of CL in connection with the proposed approaches of physicochemical modification of zeolite will be useful for the preparation of new agents for the disinfection of contaminated surfaces in industry, agriculture, etc.
[1] Blazheyevskiy, M. Ye.; Riabko, D. N. Application of peroxy acids as disinfectants and sterilization agents (monograph); LAP LAMBERT Academic Publishing, 2014.
[2] Jang, Y. J.; Kim, K.; Tsay, O. G.; Atwood, D. A.; Churchill, D. G. Destruction and Detection of Chemical Warfare Agents. Chem. Rew. 2015, 115, PR1–PR76. https://doi.org/10.1021/acs.chemrev.5b00402
[3] Tušek, D.; Ašperger, D.; Bačić, I.; Ćurković, L.; Macan, J. Environmentally Acceptable Sorbents of Chemical Warfare Agent Simulants. J. Mater. Sci. 2017, 52, 2591–2604. https://doi.org/10.1007/s10853-016-0552-x
[4] Singh, V. V.; Jurado-Sánchez, B.; Sattayasamitsathit, S.; Orozco, J.; Li, J.; Galarnyk, M.; Fedorak, Yu.; Wang, J. Multifunctional Silver Exchanged Zeolite Micromotors for Catalytic Detoxification of Chemical and Biological Threats. Adv. Funct.Mater. 2015, 25, 2147–2155.https://doi.org/10.1002/adfm.201500033
[5] Znak, Z.; Kochubei, V. Influence of Natural Clinoptilolite Modification with Ions and Zero-Valent Silver on Its Sorption Capacity. Chem. Chem. Technol. 2023, 17, 646–654. https://doi.org/10.23939/chcht17.03.646
[6] Voloshyna, Y.; Pertko, O.; Povazhnyi, V.; Patrylak, L.; Yakovenko, A. Effect of Modifying the Clinoptilolite-Containing Rocks of Transcarpathia on Their Porous Characteristics and Catalytic Properties in the Conversion of C6-Hydrocarbons. Chem. Chem. Technol. 2023, 17, 373–385. https://doi.org/10.23939/chcht17.02.373
[7] Kraljević Pavelić, S.; Simović Medica, J.; Gumbarević, D.; Filošević Vujnović, A.; Przuljet N.; Pavelićal, K. Critical Review on Zeolite Clinoptilolite Safety and Medical Applications in vivo. Front Pharmacol. [Online] 2018, 9, 1350. https//doi.org/10.3389/fphar.2018.01350
[8] Rainer, D. N.; Morris, R. E. New Avenues for Mechano Chemistry in Zeolite Science. Dalton Trans. 2021, 50, 8995–9009. https://doi.org/10.1039/d1dt01440d
[9] Gatta, G.; Lotti, D., Systematics, Crystal Structures, and Occurrences of Zeolites. In Modified Clay and Zeolite Nanocomposite Materials. Environmental and Pharmaceutical Applications, 2019, pp. 1–25. Tarasevich, Yu. I. Surface Phenomena on Disperse Materials, Naukova dumka: Kyiv, 2011.
[10] EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). Scientific Opinion on the safety and efficacy of clinoptilolite of sedimentary origin for all animal species. EFSA J. [Online] 2013, 11, 3039.https://doi.org/10.2903/j.efsa.2013.3039
[11] Kahramanova, X. T.; Sadikhova, F. E.; Veliyeva, M. N.; Kahramanova, X. T.; Ibadova, X. I. Zeolite is Biologically Active Mineral. In Natural Zeolite in Medicine; SWB, 2010; pp 10–35.
[12] Flowers, J. L.; Lonky, S. A.; Deitsch, E. J. Clinical Evidence Supporting the Use of an Activated Clinoptilolite Suspension as an Agent to Increase Urinary Excretion of Toxic Heavy Metals.Diet. Suppl. [Online] 2009, 1, 11–18. https://doi.org/10.2174/NDS.S8043
[13] Vasylechko, V. O.; Fedorenko, V. O.; Gromyko, O. M.; Gryshchouk, G. V.; Kalychak, Ya. M.; Zaporozhets, O. A.; Lototska, M. T. Solid Phase Extractive Preconcentration of Silver from Aqueous Samples and Antimicrobial Properties of the Clinoptilolite–Ag Composite. Adsorpt. Sci. Technol. 2017, 35, 602– 611. https://doi.org/10.1177/0263617417703509
[14] Vasylechko, V. O.; Fedorenko, V. O.; Gromyko, O. M.; Gryshchouk, G. V.; Kalychak, Y. M.; Tistechok S. I.; Us, I. L.; Tupys, A. Sorption Preconcentration of Silver for Atomic Absorption Analysis and Antibacterial Properties of the Acid- modified Clinoptilolite – Ag composite. Methods. Objects Chem. Anal. 2020, 15, 73–82. https:/doi.org/10.17721/moca.2020.73-82
[15] Vasylechko, V.; Fedorenko, V.; Gromyko, O.; Gryshchouk, G.; Kalychak, Ya.; Tistechok S.; Us, I.; Tupys, A. A Novel Solid- Phase Extraction Method for Preconcentration of Silver and Antimicrobial Properties of the Na-clinoptilolite–Ag Composite. Mater. Today: Proc. 2021, 35, 548–551. https://doi.org/10.1016/j.matpr.2019.10.049
[16] Patrylak, L. K.; Yakovenko, A. V.; Nizhnik, B. O.; Pertko, O. P.; Povazhnyi, V. A.; Kamenskyh, D. S.; Melnychuk, O. V. Natural Zeolites Modified with Silver Nanoparticles as Promising Sorbents with Antibacterial Properties. Nanoelectronics, Nanooptics, Nanochemistry and Nanobiotechnology, and Their Applications. NANO 2022. Springer Proceedings in Physics. Springer, Cham. 2023, 297, 87–98. https://doi.org/10.1007/978-3- 031-42708-4_5
[17] Gromyko, O. M.; Vasylechko, V. O.; Gryshchouk, G. V.; Roman, I. I.; Kalychak, Ya. M.; Fedorenko, V. O.; Bagday, S. R. Antimicrobial Activity of Transcarpathian Clinoptilolite Modified with Salts of Transition Metals. Book of Abstracts of International research and practice conference “Nanotechnology and nanomaterials” (NANO-2022). Lviv, Ukraine. Kyiv: LLC APF POLYGRAPH SERVICE, 2022.
[18] Rossainz-Castro, L. G.; De-La-Rosa-Gómez, I.; Olguín, T.; Alcántara-Díaz, D. Comparison between Silver and Copper- Modified Zeolite-Rich Tuffs as Microbicide Agents for Escherichia coli and Candida albicans. J. Environ. Manage. 2016, 183, 763– 770. https://doi.org/10.1016/j.jenvman.2016.09.034
[19] Milenkovic, J.; Hrenovic, J.; Matijasevic, D.; Niksic M.; Rajicet N. Bactericidal Activity of Cu-, Zn-, and Ag-Containing Zeolites toward Escherichia coli Isolates. Environ. Sci. Pollut. Res. 2017, 24, 20273–20281. https://doi.org/10.1007/s11356-017-9643-82
[20] Vasylechko, V. O.; Klyuchivska, O. Yu.; Manko, N. O.; Gryshchouk, G. V.; Kalychak, Ya. M.; Zhmurko, I. I.; Stoika, R. S. Novel Nanocomposite Materials of Silver – Exchanged Clinoptilolite with pre-Concentration of Ag(NH3) + in Water Possess Enhanced Anticancer Action. Appl. Nanosci. 2020, 10, 4869–4878. https:/doi.org/10.1007/s13204-020-01353-7
[21] Paryzhak, S. Ya.; Dumych, T. I.; Klyuchivska, O. Yu. Manko, O.; Gryshchouk, G. V.; Vasylechko V. O.; Stoika R. S. Silver Doping of Clinoptilolite Particles Enhances their Effects on Immunocompetent Mammalian Cells and Inhibition of Candida albicans Fungi. Appl. Nanosci. 2023, 13, 4817–4826. https://doi.org/10.1007/s13204-022-02624-1
[22] Lemire, J. A.; Harrison, J. J.; Turner, R. J Antimicrobial Activity of Metals: Mechanisms, Molecular Targets and Applications. Nature Rev. Microbiol. 2013, 11, 371–384. https://doi.org/10.1038/nrmicro3028
[23] Tarasevich, Y. I.; Polyakov, V. E.; Penchov, V. Z. Ion- Exchange Qualities and Structural Features of Clinoptilolites of Various Deposits. Khim. Tekhnol. Vody 1991, 13, 132–140.
[24] Vasylechko, V. O.; Cryshchouk, G. V.; Lebedynets, L. O.; Kuz’ma, Yu. B.; Vasylechko, L. O.; Zakordonskiy, V. P. Adsorption of Copper on Transcarpathian Сlinoptilolite. Adsorp. Sci. Technol. 1999, 17, 125–134.https://doi.org/10.1177/026361749901700206
[25] Vasylechko, V. O.; Gryshchouk, G. V.; Kaminska, M. I.; Stel’makhovych, B. M. A Solid-Phase Extraction Method Using Acid-Modified Transcarpathian Clinoptilolite for Preconcentration of Trace Amounts of Lead in Water Samples. Appl. Nanosci. 2019, 9, 1057–1065. https://doi.org/10.1007/s13204-018-0858-x
[26] Tarasevich, Y. I.; Polyakova, I.G.; Polyakov, V. E. Microcalorimetric Study of the Interaction of Water with Cation- Substituted Forms of Clinoptilolite. J. Colloid Sci. 2003, 65, 493– 499. https://doi.org/10.1023/A:1025133221812
[27] Słota, E.; Vasylechko, V.; Patsay, I.; Gołębiowski, A.; Sprynskyy, M.; Buszewski, B.; Poddubnaya, O.; Puziy, A. The Use of H-Form Clinoptilolite to Preconcentrate Trace Amounts of Nd(III) from Aqueous Solution under Dynamic Conditions. Micropor. Mesopor. Mater. [Online] 2022, 333, 111739. https://doi.org/10.1016/j.micromeso.2022.111739
[28] Akselrud, L.; Grin, Y. WinCSD: software Package for Crystallographic Calculations. J. Appl. Crystallogr. 2014, 47, 803–805. https://doi.org/10.1107/S1600576714001058
[29] Korkuna, O.; Leboda, R.; Skubiszewska-Zięba, J.; Vrublevs’ka, T.; Gun’ko, V.; Ryczkowski, J. Structural and Physicochemical Properties of Natural Zeolites: Clinoptilolite and Mordenite. Micropor. Mesopor. Mater. 2006, 87, 243–254. https://doi.org/10.1016/j.micromeso.2005.08.002
[30] Sydorchuk, V.; Poddubnaya, O.; Tsyba, M.; Zakutevskyy, O.; Khyzhun, O.; Khalameida, S.; Puziy, A. Activated Carbons with Adsorbed Cations as Photocatalysts for Pollutants Degradation in Aqueous Medium. Adsorption 2019, 25, 267–278. https://doi.org/10.1007/s10450-018-00006-0
[31] Sydorchuk, V.; Vasylechko, V.; Khyzhun, O.; Gryshchouk, G.; Khalameida, S.; Vasylechko, L. Effect of High-Energy Milling on the Structure, Some Physicochemical and Photocatalytic Properties of Clinoptilolite. Appl. Catal. A Gen. [Online] 2021, 610, 117930. https://doi.org/10.1016/j.apcata.2020.117930
[32] Armbruster, T. Clinoptilolite – heulandide: applications and basic research.In Zeolites and mesoporous materials at the down of the 21ST century. Studies in Surfase Science and Catalysis. Vol.135, Part C; Elsevier, 2001; pp 13–27.
[33] Zakordonskiy, V.; Vasylechko, V.; Staszczuk, P.; Gryshchouk, G. Water Thermodesorption and Adsorption Properties of the Transcarpathian Zeolites. Visnyk Lviv Univ. Ser. Chem. 2004, 44, 247–256.
[34] Elaiopoulos, K.; Perraki, T.; Grigoropoulou, E. Monitoring the Effect of Hydrothermal Treatments on the Structure of a Natural Zeolite through a Combined XRD, FTIR, XRF, SEM and N2- Porosimetry Analysis. Micropor. Mesopor. Mater. 2010, 134, 29–43. https://doi.org/10.1016/j.micromeso.2010.05.004
[35] Innocenzi, P. Infrared Spectroscopy of Sol-Gel Derived Silica-Based Films. J. Non-Crystalline Solids. 2003, 316, 309–319. https://doi.org/10.1016/S0022-3093(02)01637-X
[36] Skubiszewska-Zieba, J.; Khalameida, S.; Sydorchuk, V. Comparison of Surface Properties of Silica Xero- and Hydrogels Hydrothermally Modified Using Mechanochemical, Microwave and Classical Methods. Colloids and Surf. A. 2016, 504, 139–153. https://doi.org/10.1016/j.colsurfa.2016.05.066
[37] Stanić, V.; Tanasković, S. B. Antibacterial Activity of Metal Oxide Nanoparticle. Nanotoxicity 2020, 241–274. https://doi.org/10.1016/b978-0-12-819943-5.00011-7
[38] Khan, M. M.; Matussin, S. N.; Rahman, A. Recent Development of Metal Oxides and Chalcogenides as Antimicrobial Agents. Bioprocess Biosyst. Eng. 2023, 46, 231–1249. https://doi.org/10.1007/s00449-023-02878-1
[39] Alvarez-Aguiañaga, E. A.; Elizalde-González, M. P.; Sabinas- Hernández, S. A. Unpredicted Photocatalytic Activity of Clinoptilolite-Mordenite Natural Zeolite. RSC Advances 2020, 10, 39251–39260. https://doi.org/10.1039/D0RA06421A
[40] Pavlović, J.; Šuligoj, A.; Opresnik, M.; Novak Tušar, N.; Zabukovec Logar, N.; Rajić, N. Studies of Clinoptilolite-Rich Zeolitic Tuffs from Different Regions and their Activity in Photodegradation of Methylene Blue. Catalysts 2022, 12, 224. https://doi.org/10.3390/catal12020224
[41] Tong, Y.; Zhang, Y.; Tong, N.; Zhang, Z.; Wang, Y.; Zhang, X.; Zhu, S.; Li F.; Wang, X. HZSM-5 Zeolites Containing Impurity Iron Species for the Photocatalytic Reduction of CO2 with H2O. Catal. Sci. Technol. 2016, 7579–7585. https://doi.org/10.1039/c6cy01237j
[42] Concepción-Rosabal, B.; Rodríguez-Fuentes, G.; Bogdanchikova, N.; Bosch, P. Comparative Study of Natural and Synthetic Clinoptilolites Containing Silver in Different States.Micropor. Mesopor. Mater. 2005, 86, 249–255. https://doi.org/10.1016/j.micromeso.2005.07.027
[43] Mintcheva, N.; Panayotova, M.; Gicheva, G.; Gemishev, O.; Tyuliev, G. Effect of Exchangeable Ins in Natural and Modified Zeolites on Ag Content, Ag Nanoparticle Formation and their Antibacterial Activity. Materials 2021, 14, 4153. https://doi.org/10.3390/ ma14154153
[44] Fang, M.; Tan, X.; Liu, Z.; Hu, B.; Wang, X.; Recent Progress on Metal-Enhanced Photocatalysis: A Review on the Mechanism. Research [Online] 2021, ID:9794329. https://doi.org/10.34133/2021/9794329
[45] Hoflund, G. B.; Hazos, Z. F.; Salaita, G. N. Surface Characterization Study of Ag, AgO, and Ag2O Using X-Ray Photoelectron Spectroscopy and Electron Energy-Loss Spectroscopy. Phys. Rev. B. 2000, 62, 11126. https://doi.org/10.1103/PhysRevB.62.11126
[46] Manko, N. O.; Vasylechko, V. O.; Kostiv, O. I.; Kluchivska, Yu.; Sydorchuk, V. V., Ilkov, O. O.; Bagday, S. R.; Zelinskiy, A. V.; Gromyko, O. M.; Kalychak, Ya. M.; et al. Study of Antibacterial Effects of Transcarpathian Clinoptilolite Compositions Modified by Different Chemical Ways. Studia Biologica 2024, 18, 3–17. https://doi.org/10.30970/sbi.1802.767