The goal of this research is to create PMMA and SiO2-Si3N4 nanoparticles doped PMMA films with enhanced structural and electrical properties to employ in various quantum electronics fields. The casting process was used to create the (PMMA-SiO2-Si3N4) nanocomposite films. In the development of nanocomposite materials, the hybrid nanocomposite films with 2.3%, 4.6% and 6.9% contents of nanoparticles were prepared. Using an optical microscope (OM), the morphology of the nanocomposites was examined. At room temperature, the electrical characteristics of (PMMA-SiO2-Si3N4) nanocomposites were investigated. The results revealed that the dielectric constant and dielectric loss of (PMMA-SiO2-Si3N4) nanocomposites reduced as the frequency of the applied electric field increased. The electrical conductivity of alternating current rises with rising frequency. With increasing concentrations of SiO2-Si3N4 nanoparticles, the dielectric constant, dielectric loss, and AC electrical conductivity of (PMMA-SiO2-Si3N4) nanocomposites were enhanced. When the SiO2-Si3N4 NPs content reached 6.9% at 100Hz, the dielectric constant increased from 3.86 to 4.76 while the dielectric loss increased from 0.19 to 0.29. Finally, the obtained results demonstrated that the (PMMA-SiO2-Si3N4) nanocomposites have elevated values of dielectric constant compared with dielectric loss, which makes them suitable for a variety of quantum electronics applications.
[1] Kao, J.; Thorkelsson, K.; Bai, P.; Rancatore, B.J., Xu, T. Toward functional nanocomposites: taking the best of nanoparticles, polymers, and small molecules. Chem. Soc. Rev. 2013, 42, 2654–2678. https://doi.org/10.1039/c2cs35375j
[2] Marhoon, I.I.; Majeed, A.H.; Abdulrehman, M.A. Dielectric Behavior of Medical PMMA Polymer Filled with Copper Nanobud Particles. Advanced Electromagnetics 2019, 8, 50–56. https://doi.org/10.7716/aem.v8i3.1088
[3] Shi, Z.; Zhao, G.; Wang, G.; Zhang, L.; Wei, C.; Chai, J. Development of ultralight, tough and hydrophobic polymethylmethacrylate/polyvinylidene fluoride shape memory foams for heat insulation applications. Mater. Des. 2023, 225, 111527. https://doi.org/10.1016/j.matdes.2022.111527
[4] Sadeq, J.A.; Majeed, A.M.A.; Hussain, R.K.; Bamsaoud, S.F. Synthesis and Characterization of PMMA/HAP/MgO Nanocomposite as an Antibacterial Activity for Dental Applications. Al-Mustansiriyah Journal of Science 2023, 34, 129– 134. https://doi.org/10.23851/mjs.v34i2.1330
[5] Hu, Y.; Chen, Z.; Zhang, J.; Xiao, G.; Yi, M.; Zhang, W.; Xu, C. Preparation and mechanical properties of Si3N4 nanocomposites reinforced by Si3N4@ rGO particles. J. Am. Ceram. Soc. 2019, 102, 6991–7002. ttps://doi.org/10.1111/jace.16546
[6] Mallakpour, S.; Naghdi, M. Polymer/SiO2 nanocomposites: Production and applications. Prog. Mater Sci. 2018, 97, 409–447. https://doi.org/10.1016/j.pmatsci.2018.04.002
[7] Gao, X.; Zhu, Y.; Zhao, X.; Wang, Z.; An, D.; Ma, Y.; Guan, S.; Du, Y.; Zhou, B. Synthesis and characterization of polyurethane/SiO2 nanocomposites. Appl. Surf. Sci. 2011, 257, 4719–4724. https://doi.org/10.1016/j.apsusc.2010.12.138
[8] Hashim, A.; Mohammed, B.; Hadi, A. Synthesis and Augment Structural and Optical Characteristics of PVA/SiO2/BaTiO3 Nanostructures Films for Futuristic Optical and Nanoelectronics Applications. J Inorg Organomet Polym 2024, 34, 611–621. https://doi.org/10.1007/s10904-023-02846-y
[9] Abdulsalam, H.S.; Hashim, A.; Mohammed, M.K. Fabrication and Ameliorating the Performance of PS/SiO2-Sb2O3 Futuristic Films for High Energy Storage Capacitors and Biomedical Applications. Trans. Electr. Electron. Mater. 2025. https://doi.org/10.1007/s42341-025-00609-9
[10] Abdulsalam, H.S.; Hashim, A.; Mohammed, M.K. Synthesis and tuning the morphological and optical features of PS/SiO2– Sb2O3 promising hybrid nanomaterials for radiation shielding and futuristic optoelectronics applications. J Mater Sci: Mater Electron 2025, 36, 480. https://doi.org/10.1007/s10854-025- 14557-w
[11] Abdulsalam, H.S.; Hashim, A.; Mohammed, M.K. Manufacturing and Enhancing the Features of PS/SiO2–CeO2 Nanostructures for Energy Storage and Antimicrobials Applications. J Inorg Organomet Polym 2025. https://doi.org/10.1007/s10904-025-03651-5
[12] Abdulsalam, H.S.; Hashim, A.; Mohammed, M.Kh. Production and tailoring the morphological and optical features of PS/SiO2-In2O3 futuristic films for optoelectronics and radiation shielding applications. Ceramics International 2025, 51, 14328–14336. https://doi.org/10.1016/j.ceramint.2025.01.269
[13] Abdulsalam, H.S.; Hashim, A.; Mohammed, M.K. Synthesis and tuning the morphological and optical features of PS/SiO2– Sb2O3 promising hybrid nanomaterials for radiation shielding and futuristic optoelectronics applications. J Mater Sci: Mater Electron 2025, 36, 480. https://doi.org/10.1007/s10854-025- 14557-w
[14] Abbas, M.H.; Ibrahim, H.; Hashim, A. Ameliorating and Tailoring the Features of Silica-Silicon Carbide Nanoceramic Doped Polyethylene Oxide for Promising Optoelectronics Applications. Silicon 2025, 17, 697–707. https://doi.org/10.1007/s12633-025-03227-5
[15] Hashim, A.; Ahmed, G.; Ibrahim, H. Ameliorating the Features of TiN/SiO2 Promising Nanoceramic Doped Optical Polymer for Multifunctional Optoelectronics Applications. Silicon 2025, 17, 585–598. https://doi.org/10.1007/s12633-025-03220-y
[16] Hashim, A.; Kareem, A.; Ibrahim, H. Production and Ameliorating the Characteristics of (SiO2-CdS) Futuristic Nanoceramic Doped Optical Material for Flexible Nanoelectronics Applications. Silicon 2025, 17, 517–530. https://doi.org/10.1007/s12633-024-03213-3
[17] Sattar, Z.; Hashim, A. Synthesis of PMMA/PEG/SiO2/SiC Multifunctional Nanostructures and Exploring the Microstructure and Dielectric Features for Flexible Nanodielectric Applications. Silicon 2024, 16, 6181–6192. https://doi.org/10.1007/s12633-024- 03138-x
[18] Mohammed, M.K.; Abbas, M.H.; Hashim, A.; Rabee, R.; Habeeb, M.A.; Hamid, N. Enhancement of optical parameters for PVA/PEG/Cr2O3 nanocomposites for photonics fields. Rev. Compos. Mater. Av. 2022, 32, 205–209. https://doi.org/10.18280/rcma.320406
[19] Kareem, A.; Hashim, A.; Hassan, H.B. Synthesis and boosting the morphological, structural and optical features of PEO/Si3N4/CeO2 promising nanocomposites films for futuristic nanoelectronics applications. Silicon 2024, 1-12. https://doi.org/10.1007/s12633-024-02891-3
[20] Hassan, H.B.; Hasan, A.S.; Hashim, A. Synthesis and boosting the structural, optical and electronic characteristics of PS/SiC/In2O3 promising nanohybrid structures for tailored optoelectronics applications. Opt. Quantum Electron. 2024, 56, 272. https://doi.org/10.1007/s11082-023-05904-4
[21] Jaafar, H.K.; Hashim, A.; Rabee, B.H. Fabrication and tuning the morphological and optical characteristics of PMMA/PEO/SiC/BaTiO3 newly quaternary nanostructures for optical and quantum electronics fields. Opt. Quantum Electron. 2023, 55, 989. https://doi.org/10.1007/s11082-023-05208-7
[22] Ahmed, H.; Hashim, A. Tuning the characteristics of novel (PVA-Li-Si3N4) structures for renewable and electronics fields. Silicon 2022, 14, 4079–4086. https://doi.org/10.1007/s12633-021-
01186-1
[23] Ahmed, H.; Hashim, A. Design and characteristics of novel PVA/PEG/Y2O3 structure for optoelectronics devices. J. Mol. Model. 2020, 26, 210. https://doi.org/10.1007/s00894-020-04479-1 [24] Hassan, H.B.; Hasan, A.S.; Hashim, A. Fabrication and advanced optical and electronic characteristics of PVA/SiC/CeO2 hybrid nanostructures for augmented nanoelectronics and optics fields. Opt. Quantum Electron. 2024, 56, 309. https://doi.org/10.1007/s11082-023-05940-0
[25] Hazim, A.; Abduljalil, H.M.; Hashim, A. Design of PMMA doped with inorganic materials as promising structures for optoelectronics applications. Trans. Electr. Electron. Mater. 2021, 22, 851–868. https://doi.org/10.1007/s42341-021-00308-1
[26] Hashim, A.; Alshrefi, S.M.; Abed, H.H.; Hadi, A. Synthesis and Boosting the Structural and Optical Characteristics of PMMA/SiC/CdS Hybrid Nanomaterials for Future Optical and Nanoelectronics Applications. J Inorg Organomet Polym 2024, 34, 703–711. https://doi.org/10.1007/s10904-023-02866-8
[27] Ahmed, H.; Hashim, A. Design and tailoring the structural and spectroscopic characteristics of Sb2S3 nanostructures doped PMMA for flexible nanoelectronics and optical fields. Opt Quant Electron 2023, 55, 280. https://doi.org/10.1007/s11082-022-04528-4
[28] Hashim, A.; Abed, H.H.; Alshrefi, S.M. Ameliorating and Tuning the Structural, Morphological, and Optical Characteristics of Chromium Oxide/Silicon Carbide Promising Hybrid Nanocomposites Doped PMMA for Futuristic Nanoelectronics and Photonics Applications. Silicon 2024, 16, 5087–5095. https://doi.org/10.1007/s12633-024-03065-x
[29] Jaafar, H.K.; Hashim, A.; Rabee, B.H. Synthesis and Boosting the Morphological and Optical Characteristics of SiC/SrTiO3 Nanomaterials Doped PMMA/PEO for Tailored Optoelectronics Fields. Silicon 2024, 6, 603–614. https://doi.org/10.1007/s12633-023-02706-x
[30] Sattar, Z.; Hashim, A. Fabrication of PMMA/PEG/SnO2/SiC quaternary multifunctional nanostructures and exploring the microstructure and optical features for radiation attenuation and flexible photonics applications. J Mater Sci: Mater Electron 2024, 35, 2015. https://doi.org/10.1007/s10854-024-13780-1
[31] Ahmed, G.; Kadhim, A.F.; Hashim, A.; Ibrahim, H. Fabrication and exploring the structural and optical features of Si3N4/SiO2 hybrid nanomaterials doped PMMA for promising optoelectronics fields. Opt Quant Electron 2024, 56, 1308. https://doi.org/10.1007/s11082-024-07217-6
[32] Abdel-Baset, T.; Hassen, A. Dielectric relaxation analysis and Ac conductivity of polyvinyl alcohol/polyacrylonitrile film. Physica B 2016, 499, 24–28. https://doi.org/10.1016/j.physb.2016.07.002
[33] Ishaq, S.; Kanwal, F.; Atiq, S.; Moussa, M.; Azhar, U.; Losic, D. Dielectric properties of graphene/titania/polyvinylidene fluoride (G/TiO2/PVDF) nanocomposites. Materials 2020, 13, 205. https://doi.org/10.3390/ma13010205
[34] Selcuk, A.; Orhan, E.; Ocak, S.; Gökmen, U. Investigation of dielectric properties of heterostructures based on ZnO structures. Mater. Sci.-Pol. 2017, 35. https://doi.org/10.1515/msp-2017-0108.
[35] Elbayoumy, E.; El-Ghamaz, N.A.; Mohamed, F.S.; Diab, M.A.; T. Nakano, Dielectric permittivity, AC electrical conductivity and conduction mechanism of high crosslinked-vinyl polymers and their Pd (OAc) 2 composites. Polymers 2021, 13, 3005. https://doi.org/10.3390/polym13173005.
[36] Sabu, M.; Bementa, E.; Vinse Ruban, Y. J.; Ginil Mon, S. A novel analysis of the dielectric properties of hybrid epoxy composites. Adv. Compos. Hybrid Mater. 2020, 3, 325–335. https://doi.org/10.1007/s42114-020-001660
[37] Hashim, A.; Ibrahim, H.; Hadi, A. Boosting of morphological, structural and optical characteristics of SiC-NiO inorganic nanomaterials merged organic polymer for optoelectronics applications. J. Inorg. Organomet. Polym. Mater. 2024, 1–8. https://doi.org/10.1007/s10904-024-03260-8
[38] Hashim, A.; Hadi, A.; Abbas, M. Synthesis and unraveling the morphological and optical features of PVP-Si3N4-Al2O3 nanostructures for optical and renewable energies fields. Silicon 2023, 15, 6431–6438. https://doi.org/10.1007/s12633-023-02529-w.
[39] Hashim, A.; Hadi, A.; Ibrahim, H.; Rashid, F.L. Fabrication and boosting the morphological and optical properties of PVP/SiC/Ti nanosystems for tailored renewable energies and nanoelectronics fields. J. Inorg. Organomet. Polym. Mater. 2024, 34, 1678–1688. https://doi.org/10.1007/s10904-023-02908-1
[40] Hashim, A.; Ibrahim, H.; Rashid, F.L.; Hadi, A. Synthesis and Augmented Morphological and Optical Properties of Si3N4- TiN Inorganic Nanostructures Doped PVP for Promising Optoelectronics Applications. J Inorg Organomet Polym 2025, 35, 827–837. https://doi.org/10.1007/s10904-024-03324-9
[41] Kadhim, A.F.; Ahmed, G.; Hashim, A. Fabrication and Tuning the Structural and Optical Features of SiO2/ Si3N4 Nanomaterials Doped PS for Promising Optoelectronics Applications. J Inorg Organomet Polym 2024, 34, 4267–4276. https://doi.org/10.1007/s10904-024-03075-7
[42] Hashim, A.; Ibrahim, H.; Hadi, A. Fabrication and augmentation of optical and structural characteristics of PVA/SiC/CoFe2O4 hybrid nanocomposites for tailored optical and quantum electronics applications. Opt Quant Electron 2024, 56, 1177. https://doi.org/10.1007/s11082-024-07141-9
[43] Agool, I.R., Kadhim, K.J. & Hashim, A. Preparation of (polyvinyl alcohol–polyethylene glycol–polyvinyl pyrrolidinone– titanium oxide nanoparticles) nanocomposites: electrical properties for energy storage and release. Int J Plast Technol 20, 121–127 (2016). https://doi.org/10.1007/s12588-016-9144-5
[44] Sattar, Z.; Hashim, A. Quaternary PMMA-PEG/SnO₂-SiC Nanocomposite Films for Flexible Nanodielectric and Energy Storage Applications. Silicon 2025. https://doi.org/10.1007/s12633-025-03300-z
[45] Hashim, A.; Ibrahim, H.; Hadi, A. Fabrication of PS/Si3N4/SrTiO3 multifunctional nanocomposites and boosting their microstructure and optical and dielectric features for energy storage and nanodielectric applications. J Mater Sci: Mater Electron 2025, 36, 312. https://doi.org/10.1007/s10854-025- 14295-z
[46] Hashim, A.; Ibrahim, H.; Hadi, A. Fabrication of SiC-Al2O3 Nanoceramic Doped Organic Polymer for Flexible Nanoelectronics and Optical Applications. Silicon 2024, 16, 6575–6587. https://doi.org/10.1007/s12633-024-03172-9
[47] Mohammed, M.; Khafagy, R.; Hussien, M.S.; Sakr, G.; Ibrahim, M.A.; Yahia, I.; Zahran, H. Enhancing the structural, optical, electrical, properties and photocatalytic applications of ZnO/PMMA nanocomposite membranes: Towards multifunctional membranes. J. Mater. Sci.: Mater. Electron. 2021, 1–26. https://doi.org/10.1007/s10854-021-07402-3
[48] Rajesh, K.; Crasta, V.; Rithin Kumar, N.; Shetty, G.; Rekha, P. Structural, optical, mechanical and dielectric properties of titanium dioxide doped PVA/PVP nanocomposite. J. Polym. Res. 2019, 26, 99. https://doi.org/10.1007/s10965-019-1762-0
[49] Kadhim, A.F.; Hashim, A. Fabrication and tuning the structural and dielectric characteristics of PS/SiO2/SrTiO3 hybrid nanostructures for nanoelectronics and energy storage devices. Silicon 2023, 15, 4613–4621. https://doi.org/10.1007/s12633-023- 02381-y
[50] Dergal, F.; Lerari, D.; Bachari, K. Spontaneous Polymerization of 4-Vinylpyridine Monomer on Micron-Sized Mica Platelets. J. Eng. Res. App. 2023, 17, 800–806. https://doi.org/10.23939/chcht17.04.800
[51] Abdullah, O.G.; Saleem, S.A. Effect of copper sulfide nanoparticles on the optical and electrical behavior of poly (vinyl alcohol) films. J. Electron. Mater. 2016, 45, 5910–5920. https://doi.org/10.1007/s11664-016-4797-6
[52] Sattar, Z. and A. Hashim, Synthesis of PMMA/PEG/SiO2/SiC multifunctional nanostructures and exploring the microstructure and dielectric features for flexible nanodielectric applications. Silicon 2024, 16, 6181–6192. https://doi.org/10.1007/s12633-024-03138-x
[53] Meteab, M.H.; Hashim, A.; Rabee, B.H. Synthesis and characteristics of SiC/MnO2/PS/PC quaternarynanostructures for advanced nanodielectrics fields. Silicon 2023, 15, 1609–1620. https://doi.org/10.1007/s12633-022-02114-7
[54] Jaafar, H.K.; Hashim, A.; Rabee, B.H. Tailoring the influence of hybrid SiC/SrTiO3 nanomaterials doped PMMA/PEO for promising nanodielectric and nanoelectronic applications.Silicon 2024, 16, 1905–1915. https://doi.org/10.1007/s12633-023-02796-7
[55] Kareem, A.; Hashim, A.; Hassan, H.B. Ameliorating and tailoring the morphological, structural, and dielectric features of Si3N4/CeO2 futuristic nanocomposites doped PEO for nanoelectronic and nanodielectric applications. J. Mater. Sci.: Mater. Electron. 2024, 35, 461. https://doi.org/10.1007/s10854-024-12278-0
[56] Hashim, A.; Hadi, A. Synthesis and characterization of novel piezoelectric and energy storage nanocomposites: biodegradable materials–magnesium oxide nanoparticles. Ukrainian Journal of Physics 2017, 62. https://doi.org/10.15407/ujpe62.12.1050 (2017)
[57] Hashim, A.; Hadi, A. A Novel Piezoelectric Materials Prepared from (Carboxymethyl Cellulose-Starch) Blend-Metal Oxide Nanocomposites. Sensor Letters 2017, 15. https://doi.org/10.1166/sl.2017.3910
[58] Hashim, A.; Hadi, A. Novel of (Niobium Carbide/Polymer Blend) Nanocomposites: Fabrication and Characterization for Pressure Sensor. Sensor Letters 2017, 15. https://doi.org/10.1166/sl.2017.3892
[59] Hashim, A.; Habeeb, M.A.; Hadi, A.; Jebur, Q.M.; Hadi, W. Fabrication of Novel (PVA-PEG-CMC-Fe3O4) Magnetic Nanocomposites for Piezoelectric Applications. Sensor Letters 2017, 15. https://doi.org/10.1166/sl.2018.3935
[60] Ahmed, G.; Hashim, A. Synthesis of PMMA/PEG/Si3N4 nanostructures and exploring the structural and dielectric characteristics for flexible nanoelectronics applications. Silicon 2023, 15, 3977–3985. https://doi.org/10.1007/s12633-023-02322-9
[61] Reddy, P.L.; Deshmukh, K.; Chidambaram, K.; Ali, M.M.N.; Sadasivuni, K.K.; Kumar, Y.R.; Lakshmipathy, R.; Pasha, S.K. Dielectric properties of polyvinyl alcohol (PVA) nanocomposites filled with green synthesized zinc sulphide (ZnS) nanoparticles. J. Mater. Sci.: Mater. Electron. 2019, 30, 4676–4687. https://doi.org/10.1007/s10854-019-00761-y
[62] Jaafar, H.K.; Hashim, A.; Rabee, B.H. Fabrication and unraveling the morphological, structural, and dielectric features of PMMA-PEO-SiC–BaTiO3 promising quaternary nanocomposites for multifunctional nanoelectronics applications. J. Mater. Sci.: Mater. Electron. 2024, 35, 128. https://doi.org/10.1007/s10854- 024-11924-x
[63] Hussien, H.A.J.; Hashim, A. Fabrication and analysis of PVA/TiC/SiC hybrid nanostructures for nanoelectronics and optics applications. J. Inorg. Organomet. Polym. Mater. 2024, 1– 12. https://doi.org/10.1007/s10904-024-03007-5
[64] Kadhim, A.F.; Hashim, A. Fabrication and tuning the structural and dielectric characteristics of PS/SiO2/SrTiO3 hybrid nanostructures for nanoelectronics and energy storage devices. Silicon 2023, 15, 4613–4621. https://doi.org/10.1007/s12633-023- 02381-y.
[65] Abbas, M.H.; Ibrahim, H.; Hashim, A.; Hadi, A. Fabrication and Tailoring Structural, Optical, and Dielectric Properties of PS/CoFe2O4 Nanocomposites Films for Nanoelectronics and Optics Applications. Trans. Electr. Electron. Mater. 2024, 1–9. https://doi.org/10.1007/s42341-024-00524-5
[66] Hadi, A.; Hashim, A. Development of a new humidity sensor based on (carboxymethyl cellulose–starch) blend with copper oxide nanoparticles. Ukrainian Journal of Physics 2017, 62. https://doi.org/10.15407/ujpe62.12.1044
[67] Vasudevan, P.; Thomas, S. Synthesis and dielectric studies of poly (vinyl pyrrolidone)/titanium dioxide nanocomposites. IOP Conf. Ser.: Mater. Sci. Eng. 2015, 73, 012015. https://doi.org/10.1088/1757-899X/73/1/012015
[68] Divya, R.; Meena, M.; Mahadevan, C.; Padma, C. Investigation on CuO dispersed PVA polymer films. J. Eng. Res. App. 2014, 4, 1–7. https://www.ijera.com/papers/Vol4_issue5/Version%205/A04505 0107.pdf
[69] Hojjat, A.; Mahmood, B. Effect of EVA content upon the dielectric properties in LDPE-EVA Films. Int. J. Eng. Res. Afr. 2015, 4, 69–72. https://doi.org/10.17950/ijer/v4s2/206
[70] Tantis, I.; Psarras, G.; Tasis, D. Functionalized graphene-- poly (vinyl alcohol) nanocomposites: Physical and dielectric properties. eXPRESS Polym. Lett. 2012, 6. https://doi.org/10.3144/expresspolymlett.2012.31