A series of 3-(1-R-5-phenyl-1H-pyrrol-2-yl)propanoic acids (R = H, Ar, Alk, Hetaryl) was obtained via the reaction of 4,7-dioxo-7-phenylheptanoic acid with amines. The enthalpies of vaporization and fusion of eight compounds were experimentally determined using differential thermal and thermogravimetric methods of analysis for the first time. Based on the experimentally determined thermodynamic parameters of the melting process, an analytical method for calculating the enthalpy of fusion from the specific value of the entropy of fusion for substances with an arylpyrrole fragment is proposed. Calculating methods for the enthalpies of sublimation using the data of derivatographic studies are analyzed. Recalculation of the enthalpies of phase transitions to 298.15 K was performed.
[1] Mohi-ud-din, R.; Pottoo, F. H.; Mir, R. H.; Mir, P. A.; Sabreen, S.; Maqbool, M.; Shah, A. J.; Shenmar, K.; Raza, S. N. A Comprehensive Review on Journey of Pyrrole Scaffold against Multiple Therapeutic Targets. Anti-Cancer Agents Med. Chem. 2022, 22, 3291–3303. https://doi.org/10.2174/1871520622666220613140607
[2] Bhardwaj, V.; Gumber, D.; Abbot, V.; Dhiman, S.; Sharma, P. Pyrrole: A Resourceful Small Molecule in Key Medicinal Hetero- Aromatics. RSC Adv. 2015, 5, 15233–15266. https://doi.org/10.1039/c4ra15710a
[3] Joule, J. A.; Mills, K.; Smith, G. F. Heterocyclic Chemistry; CRC Press, 2020. https://doi.org/10.1201/9781003072850
[4] Ji Ram, V.; Sethi, A.; Nath, M.; Pratap, R. Five-Membered Heterocycles. The Chemistry of Heterocycles 2019, 149–478. https://doi.org/10.1016/b978-0-08-101033-4.00005-x
[5] Kerru, N.; Gummidi, L.; Maddila, S.; Gangu, K. K.; Jonnalagadda, S. B. A Review on Recent Advances in Nitrogen-Containing Molecules and Their Biological Applications. Molecules 2020, 25, 1909. https://doi.org/10.3390/molecules25081909
[6] Li Petri, G.; Spanò, V.; Spatola, R.; Holl, R.; Raimondi, M. V.; Barraja, P.; Montalbano, A. Bioactive Pyrrole-Based Compounds with Target Selectivity. Eur. J. Med. Chem. 2020, 208, 112783. https://doi.org/10.1016/j.ejmech.2020.112783
[7] Bortolozzi, R.; Mattiuzzo, E.; Dal Pra, M.; Sturlese, M.; Moro, S.; Hamel, E.; Carta, D.; Viola, G.; Grazia Ferlin, M. Targeting Tubulin Polymerization by Novel 7-Aryl-Pyrroloquinolinones: Synthesis, Biological Activity and SARs. Eur. J. Med. Chem 2018, 143, 244–258. https://doi.org/10.1016/j.ejmech.2017.11.038
[8] Paprocka, R.; Pazderski, L.; Mazur, L.; Wiese-Szadkowska, M.; Kutkowska, J.; Nowak, M.; Helmin-Basa, A. Synthesis and Structural Study of Amidrazone Derived Pyrrole-2,5-Dione Derivatives: Potential Anti-Inflammatory Agents. Molecules 2022, 27, 2891. https://doi.org/10.3390/molecules27092891
[9] Amin, A.; Qadir, T.; Sharma, P. K.; Jeelani, I.; Abe, H. A Review on the Medicinal and Industrial Applications of N- Containing Heterocycles. Open J. Med. Chem. 2022, 16, e2209010. https://doi.org/10.2174/18741045-v16-e2209010
[10] Bulumulla, C.; Gunawardhana, R.; Gamage, P. L.; Miller, J. T.; Kularatne, R. N.; Biewer, M. C.; Stefan, M. C. Pyrrole- Containing Semiconducting Materials: Synthesis and Applications in Organic Photovoltaics and Organic Field-Effect Transistors. ACS Appl. Mater. Interfaces. 2020, 12, 32209–32232. https://doi.org/10.1021/acsami.0c07161
[11] Mihalovits, M. Temperature and Pressure Effects on the Hydrogen-Bonding Hansen Solubility Parameter: Cases of N- Alkanols (C1-C5). J. Mol. Liq. 2022, 363, 119910. https://doi.org/10.1016/j.molliq.2022.119910
[12] Pragathi, S.G.; Echanur, A. V.; Matadh, A. V.; Rangappa, S.; Shivakumar, H.N.; Murthy, R. N.; Ranganath, V. S.; Ureña- Benavides, E. E.; Maibach, H.; Murthy, S.N. Sublimation of Drugs from the Site of Application of Topical Products. Mol. Pharmaceutics 2023, 20, 2814–2821. https://doi.org/10.1021/acs.molpharmaceut.2c00816
[13] Sobechko, I.; Horak, Y.; Dibrivnyi, V.; Obushak, M.; Goshko, L. Thermodynamic Properties of 2-Methyl-5-Arylfuran-3 Carboxylic Acids Chlorine Derivatives in Organic Solvents. Chem. Chem. Technol. 2019, 13, 280–287. https://doi.org/10.23939/chcht13.03.280
[14] Naef, R.; Acree, W. Calculation of Five Thermodynamic Molecular Descriptors by Means of a General Computer Algorithm Based on the Group-Additivity Method: Standard Enthalpies of Vaporization, Sublimation and Solvation, and Entropy of Fusion of Ordinary Organic Molecules and Total Phase-Change Entropy of Liquid Crystals. Molecules 2017, 22, 1059. https://doi.org/10.3390/molecules22071059
[15] Losada-Pérez, P.; Shekhar, C.; Leys, J.; Cordoyiannis, G.; Glorieux, C.; Thoen, J. Measurements of Heat Capacity and Enthalpy of Phase Change Materials by Adiabatic Scanning Calorimetry. Int. J. Thermophys 2011, 32, 913–924. https://doi.org/10.1007/s10765-011-0984-0
[16] Santos, L.M.; Lobo Ferreira, A.I.; Štejfa, V.; Rodrigues, A.S.M.C.; Rocha, M.A.A.; Torres, M.C.; Tavares, F.M.S.; Carpinteiro, F.S. Development of the Knudsen Effusion Methodology for Vapour Pressure Measurements of Low Volatile Liquids and Solids Based on a Quartz Crystal Microbalance. J. Chem. Thermodyn. 2018, 126, 171–186. https://doi.org/10.1016/j.jct.2018.07.004
[17] Ximello, A.; Flores, H.; Rojas, A.; Camarillo, E.A.; Amador, M.P. Gas Phase Enthalpies of Formation of Nitrobenzamides Using Combustion Calorimetry and Thermal Analysis. J. Chem. Thermodyn. 2014, 79, 33–40. https://doi.org/10.1016/j.jct.2014.07.006
[18] Giani, S.; Riesen, R.; Schawe, J. E. K. An Indirect Method for Vapor Pressure and Phase Change Enthalpy Determination by Thermogravimetry. Int. J. Thermophys. 2018, 39, 84. https://doi.org/10.1007/s10765-018-2407-y
[19] Treviño-Kauffmann, M. A.; Esparza-Rivera, D.; Rojas, A. Sublimation Enthalpies of Organic Compounds by Isothermal Thermogravimetry. J. Therm. Anal. Calorim. 2024. https://doi.org/10.1007/s10973-024-12897-z
[20] Chatterjee, K.; Hazra, A.; Dollimore, D.; Alexander, K. S. Estimating Vapor Pressure Curves by Thermogravimetry: A Rapid and Convenient Method for Characterization of Pharmaceuticals. Eur. J. Pharm. Biopharm. 2002, 54, 171–180. https://doi.org/10.1016/s0939-6411(02)00079-6
[21] Sitar, A.; Shevchenko, D.; Matiichuk, V.V.; Skrypska, O.; Lesyuk, O.; Khomyak, S.; Lytvyn, R.; Sobechko, I.; Horak, Yu. Synthesis of 3-(1-R-5-Phenyl-1H-Pyrrol-2-yl)Propanoic Acids and Prediction of Their Biological Activity. Visnyk of the Lviv University. Series Chemistry 2024, 65, 223–223. https://doi.org/10.30970/vch.6501.223 (in Ukrainian)
[22] Sobechko, I.; Dibrivnyi, V.; Horak, Y.; Velychkivska, N.; Kochubei, V.; Obushak, M. Thermodynamic Properties of Solubility of 2-Methyl-5-Arylfuran-3-Carboxylic Acids in Organic Solvents. Chem. Chem. Technol. 2017, 11, 397–404. https://doi.org/10.23939/chcht11.04.397
[23] Klachko, O.; Matiychuk, V.; Sobechko, I.; Serheyev, V.; Tishchenko, N. Thermodynamic Properties of 6-Methyl-2-Oxo-4- Aryl-1,2,3,4-Tetrahydropyrimidine-5-Carboxylic Acid Esters.Chem. Chem. Technol. 2020, 14, 277–283. https://doi.org/10.23939/chcht14.03.277
[24] Zhuang, W.; Ju, C.-F.; Zhang, X.-Q.; Xiao, J.; Wang, K. Synthesis, Characterization and Crystal Structure of 4,7-Dioxo-7- phenylheptanoic Acid. Asian J. Chem. 2014, 26, 3116–3118. https://doi.org/10.14233/ajchem.2014.17199
[25] Blicke, F. F.; Warzynski, R. J.; Faust, J. A.; Gearien, J. E. The Preparation of Certain Acids and Esters which Contain Phenylpyrryl Nuclei. J. Am. Chem. Soc. 1944, 66, 1675–1677. https://doi.org/10.1021/ja01238a021
[26] Sir Robinson, R.; Todd, W. M. β-Phenylfurylethylamine and analogous derivatives of thiophen and pyrrole. J. Chem. Soc.1939, 1743–1747. https://doi.org/10.1039/JR9390001743
[27] Veitch, G. E.; Bridgwood, K. L.; Rands-Trevor, K.; Ley, S. V. Magnesium Nitride as a Convenient Source of Ammonia: Preparation of Pyrroles. Synlett 2008, 17, 2597–2600. https://doi.org/10.1055/s-0028-1083504
[28] Acree, W.; Chickos, J. S. Phase Transition Enthalpy Measurements of Organic and Organometallic Compounds. Sublimation, Vaporization and Fusion Enthalpies From 1880 to 2015. Part 1. C1− C10. J. Phys. Chem. Ref. Data 2016, 45, 033101. https://doi.org/10.1063/1.4948363
[29] Sobechko, I. Calculation Method of Heat Capacity Change during Organic Compounds Vaporization and Sublimation. Chem. Chem. Technol.2016, 10, 27–33. https://doi.org/10.23939/chcht10.01.027