The stress-strain state modelling of the autochthonous sedimentary complex in the dynamic influence zone of the thrust wedge

2014;
: pp. 58-71
1
Ivan Franko National University of Lviv
2
Ivan Franko National University of Lviv

Purpose. Computer modelling in the framework of continuum mechanics is a powerful tool to obtain qualitative and quantitative deformation parameters in the geological media. The purpose of this work was to study stress and strain fields of the sedimentary autochthonous complex owing to moving a thrust wedge. Subject of inquiry is layered rocks with different geometrical and mechanical properties bounded by the basement of the peleobasin and compressive thrust wedge taking into account the gravitational forces and contact frictions. Methodology. Series of the finite-element 2D-models of dynamic influence of thrust wedge on the sedimentary autochthonous complex are constructed. We consider layered structures with different mechanical properties, transferring of tectonic compression through mechanical frictional contact, morphology of a fault surface and dependence on deformation ratio. The stress-strain state of rocks in front of the thrust wedge are calculated. The developed technique of the complex analysis of stress and strain invariants for visualization was used. Distributions of the equivalent strains and stresses, pressures, maximal tangential stresses, stress trajectories and slide lines traced under angle of the internal friction to them, as well the probable fracturing zones that defined by Byerlee's criterion are mapped. All together they are most important for geological interpretation. Results. The analyzed stress and strain fields of the models found that successive thrust fault in the autochthonous occurred in front of the allochthonous structure and had primarily an arc-like surface. The sizes of thrust structures depend on sedimentary rocks thickness, order of competent and incompetent layers, less – on velocity of sliding. Originality. The explanation of morphology, the thrusts proportion and pattern of the stress and strain distribution inside these structures are resulted. Practical significance. The revealed regular dependences of the thrust formation mechanism are important to consider controversial questions of tectonic zoning and structural evolution of the Ukrainian Carpathians, interpretation of geophysical data about deep parts of the thrust nappes and its para-autochthon, in particular, related to exploration of the oil-and-gas bearing structures.

1. Kruglov S.S., Glushko V.V., Shakin V.A. at al. Geologicheskoe stroenie i gorjuchie iskopaemye Ukrainskih Karpat [Geological structure and combustible minerals of the Ukrainian Carpathians ]. Moscow, Nedra, 1971, 392 p.
2. Hnylko O.M. Tektonichne rayonuvannya Karpat u svitli tereynovoyi tektoniky. Stattya 2. Flishovi Karpaty - davnya akretsiyna pryzma [Tectonic zoning of the Carpathians in term's of the terrane tectonics. Article 2. The flysch Carpathians - ancient accretionary prism]. Heodynamika Geodynamics (Ukraine), 2012, no. 1(12), pp. 67-78.
3. Glushko V.V., Kuzovenko V.V., Myshkin L.P., Shlapinskij V.E. Izuchenie geologo-geofizicheskih materialov po Skibovoj i Krosnenskoj zonam Skladchatyh Karpat s cel'ju vyjavlenija perspektivnyh na neft' i gaz objektov [Geological and geophysical studies of the materials from Skyba and Krosno zones of the Folded Carpathians for distinguish of the perspective oil and gas objects]. L'vov, Tematicheskaja partija, Archive of DP "Zakhidukrheolohiya", 1990, 142 p.
4. Krups'kyy Yu.Z. Heodynamichni umovy formuvannya i naftohazonosnist' Karpats'koho ta Volyno-Podil's'koho rehioniv Ukrayiny [Geodynamic forming conditions and oil-and-gas bearing of the Carpathian and Volyn'-Podillya areas of the Ukraine]. Kyiv : UkrDHRI, 2001, 144 p.
5. Kulchyts'kyi Ya., Lozyniak P., Petrashkevych M. Osnovni problemy heolohichnoyi budovy ta poshukiv korysnykh kopalyn Karpat·s'koho rehionu [Basic problems of geological structure and minerals prospecting in the Carpathian region]. Pratsi naukovoho tovarystva imeni Shevchenka: heolohiya, heofizyka, khemiya, biokhemiya, materiyaloznavstvo, mekhanika materiyaliv [Proceedings of the Shevchenko Scientific society (Ukraine)], 1997, no. 1, pp. 25-45.
6. Rebeckij Ju.L. Tektonicheskie naprjazhenija i prochnost' prirodnyh gornyh massivov [Tectonic stresses and strength of natural rock massifs]. Moscow, IKC "Akademkniga", 406 p.
7. Stupka O. S. Tektonika Ukrayins'kykh Karpat - dosyahnennya i problemy [Tectonics of the Ukrainian Carpathians - progress and problems], Heolohiya i heokhimiya horyuchykh kopalyn [Geology and geochemistry of combustible minerals (Ukraine]), 2001, no.2, pp. 27-37.
8. Volarovich M.P., Bajuk E.I., Tomashevskaja I.S., Dobrynin V.M. Fizicheskie svojstva mineralov i gornyh porod pri vysokih termodinamicheskih parametrah: spravochnik [Physical properties of minerals and rocks at high thermo-dynamical parameters: handbook]. 2nd edition. Moscow, Nedra, 1988, 255 p.
9. Fourman V.V., Khomyak M.M., Khomyak L.M. Metodyka kompleksnoho analizu deformatsiy ta napruzhen' skinchenno-elementnykh modeley nasuvoutvorennya [The methodology of the complex analysis of strains and stresses for finite-element modelling of thrusting]. Heodynamika - Geodynamics (Ukraine), 2008, no. 1(7), pp. 116-127.
https://doi.org/10.23939/jgd2008.01.116
10. Khomyak L.M. Nasuvy v heolohichniy evolyutsiyi Ukrayins'kykh Karpat ta dynamichni umovy yikh formuvannya za danymy komp"yuternoho modelyuvannya. Avtoreferat Diss. [Thrusts in the geological evolution of the Ukrainian Carpathians and dynamic conditions of their formation according to computer modelling. Author's abstract]. Lviv, 2010, 21 p.
11. Khomyak L.M., Khomyak M.M. Modelyuvannya napruzheno-deformovanoho stanu osadovoho kompleksu v zoni subduktsiyi ta dynamichni umovy formuvannya rannikh nasuviv Ukrayins'kykh Karpat [The strain-stress state modelling of the sedimentary complex in subduction zone and dynamic conditions of early thrusts formation in the Ukrainian Carpathians]. Heodynamika - Geodynamics (Ukraine), 2013, no. 1(14), pp. 142-153.
12. Albertz M., Sanz P.F. Critical state finite element models of contractional fault-related folding: Part 2. Mechanical analysis. Tectonophysics, 2012, Vol. 576-577, pp. 150-170.
https://doi.org/10.1016/j.tecto.2012.06.016
13. Buiter S.J.H. A review of brittle compressional wedge models. Tectonophysics, 2012, Vol. 530-531, pp. 1-17.
https://doi.org/10.1016/j.tecto.2011.12.018
14. Carter N. L., Tsenn M.C. Flow properties of continental lithosphere. Tectonophysics, 1987, Vol. 136, pp. 27-63.
https://doi.org/10.1016/0040-1951(87)90333-7
15. Couzens-Schultz B.A., Chan A.W. Stress determination in active thrust belts: An alternative leak-off pressure interpretation. J. of Struct. Geol., 2010, Vol. 32, pp. 1061-1039.
https://doi.org/10.1016/j.jsg.2010.06.013
16. Dean S.L., Morgan J.K., Fournier T. Geometries of frontal fold and thrust belts: Insights from discrete element simulations. J. of Struct. Geol., 2013, Vol. 53, pp. 43-53.
https://doi.org/10.1016/j.jsg.2013.05.008
17. Evansa M.A., Fischer M.P. On the distribution of fluids in folds: A review of controlling factors and processes. J. of Struct. Geol., 2012, Vol. 44, pp. 2-24.
https://doi.org/10.1016/j.jsg.2012.08.003
18. Gerya T. V. Introduction to Numerical Geodynamic Modelling. Cambridge University Press, 2010, 358 p.
https://doi.org/10.1017/CBO9780511809101
19. Graya G.G., Morgan J.K., Sanz P.F. Overview of continuum and particle dynamics methods for mechanical modeling of contractional geologic structures. J. of Struct. Geol., 2014, Vol. 59, pp. 19-36.
https://doi.org/10.1016/j.jsg.2013.11.009
20. Henk A., Nemčok M. Stress and fracture prediction in inverted half-graben structures. J. of Struct. Geol, 2008, Vol. 30, pp. 81-97.
https://doi.org/10.1016/j.jsg.2007.10.006
21. Plassarta R., Fernandesb R., Girauda A., Hoxhac D., Laigled F. Hydromechanical modelling of an excavation in an underground research laboratory with an elastoviscoplastic behaviour law and regularization by second gradient of dilation. International Journal of Rock Mechanics & Mining Sciences, 2013, Vol. 58, pp. 23-33.
https://doi.org/10.1016/j.ijrmms.2012.08.011
22. Jarosinskia M., Beekman F., Matenco L., Cloetingh S. Mechanics of basin inversion: Finite element modelling of the Pannonian Basin System. Tectonophysics, 2011, Vol. 502, pp. 121-145.
https://doi.org/10.1016/j.tecto.2009.09.015
23. Jing L. A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering. International Journal of Rock Mechanics & Mining Sciences, 2003, Vol. 40, pp. 283-353.
https://doi.org/10.1016/S1365-1609(03)00013-3
24. Koehn D., Sachau T. Two-dimensional numerical modeling of fracturing and shear band development in glacier fronts. J. of Struct. Geol., 2014, Vol. 44, pp. 133-142.
https://doi.org/10.1016/j.jsg.2012.11.002
25. Nemčhok M., Schamel S., Gayer R. Thrustbelts. Structural architecture, thermal regime and petroleum systems. Cambridge University Press, 2005, 541 p.
https://doi.org/10.1017/CBO9780511584244
26. Pospíšil L. and Nemčok M. Geophysical model of the Carpathian-Pannonian lithosphere. Geological and geophysical data analyses, Lambert Academic Publishing, Saarbrucken, 2010, 205 p.
27. Ramsay J.G., Lisle R.G. The techniques of modern structural geology. Vol. 3. Applications of continuum mechanics in structural geology. Elsevier, 2000, pp. 701-1061.
28. Simpson G. Mechanics of non-critical fold-thrust belts based on finite element models. Tectonophysics, 2011, Vol. 499, pp. 142-155.
https://doi.org/10.1016/j.tecto.2011.01.004
29. Smart K. J., Ferrill D. A., Morris A.P., McGinnis R.N. Geomechanical modeling of stress and strain evolution during contractional fault-related folding. Tectonophysics, 2012, Vol. 576-577, pp. 171-196.
https://doi.org/10.1016/j.tecto.2012.05.024
30. Wissing S.B., Ellis S., Pfiffner O.A. Numerical models of Alpine-type cover nappes. Tectonophysics, 2003, Vol. 367, pp. 145-172.
https://doi.org/10.1016/S0040-1951(03)00097-0