Mathematical modelling of wave processes in a layed half-space with an additional tension

2011;
: 196-198
1
Carpathian Branch of Subbotin Institute of Geophysics of NAS of Ukraine
2
Carpathian Branch of Subbotin Institute of Geophysics of NAS of Ukraine
3
Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of NAS of Ukraine; Kuyawy and Pomorze University in Bydgoszcz

We consider the model of a vertically inhomogeneous medium, when one or more layers are under more stress. We suggested to use the matrix method of Thomson-Haskela for solving the problem to build field movements in order to use relevant analytical relations for solving the inverse problem in respect of stress tensor and / or parameters of the source. The results of mathematical modelling are simple in utilization and can be used for interpretation of seismic records.

  1. Aki K., Richards P. Kolichestvennaja sejsmologija: Teorija i metody. — M.: Mir, 1983. —  T. 1, 2.
  2. Molotkov L.A. Matrichnyj metod v teorii rasprostranenija voln v sloistyh, uprugih i zhidkih sredah. — M.: Nauka, 1984. — 880 s.
  3. Pustovitenko B.G. Forosskoe zemletrjasenie 18 oktjabrja 1998 goda, Ms=4,3, Io=5 (Krym) // Zemletrjasenija Severnoj Evrazii v 1998godu. —  Obninsk: GSRAN, 2004, S.240 — 248
  4. Malytskyi D.V. Modeliuvannia khvylovykh poliv, zburenykh efektyvno–tochkovoiu dyslokatsiieiu/ D.V.Malytskyi, O.O.Muila // Visnyk KNU im.Tarasa Shevchenka. Seriia heolohiia. — 2007  —  vyp.41. — S.25 — 29.
  5. Malytskyi D.V. Analitychno–chyslovi pidkhody do obchyslennia chasovoi zalezhnosti komponent tenzora seismichnoho momentu / D.V.Malytskyi // Heoinformatyka. — 2010. — T1. —  S.79 — 86.
  6. Tian J. Influence of stress on elastic wave velocity around a borehole in rocks/ J. Tian, Yu. Man, Z. Xie, H. Iq // The 14th World Conference on Earthquake Engineering - 2008.