3D geoelectric model of the Zmiyinyi island

2013;
: pp. 198 - 200
https://doi.org/10.23939/jgd2013.02.198
Received: July 28, 2013
1
Subbotin Institute of Geophysics of National Academy of Sciences of Ukraine
2
Subbotin Institute of Geophysics of National Academy of Sciences of Ukraine

Purpose. Construction of three-dimensional geoelectric model of the Zmiyniy Island and the nearby waters of the northern Black Sea shelf. Methods. Methodology. The methodology of research is directly linked to the procedure of the three-dimensional geoelectric model construction. It involves the selection of the spatial parameters of the model and its cells, and the model is built against the background of the "normal" one-dimensional geoelectric section in this area. Repeated changes in the parameters in accordance with the observed data and the recalculation of model make it possible to achieve the required similarity. Results. In August of 2012 on the Zmiyniy Island were carried out MT sounding. Field data were processed by software package PRC_MTMV [Varentsov. et. al., 1997; Varentsov, Sokolova, 2000], as well as program PTS [Ladanivsky, 2003; Semenov, 1985]. On this base one-dimensional inversion was made. According to its results, a sharp reduction in the calculated resistivity is at depths ranging from 10 km to 45 km, where they reach a minimum, then there is an increasing in resistivity to depths of 100-120 km. This feature indicates the presence at these depths the powerful conductor of telluric current. According to the preliminary modeling obtained a zone of high conductivity at the depths of 20 to 100 km with an electrical resistivity of 25 Ohm*m. It is suggested that changes in the electrical parameters of the Earth's crust and upper mantle caused by the redistribution of deep fluids. Originality. The MTS studies on the Zmiyniy Island and processing using two software packages were made, as well as an inversion of the MTS data. The preliminary three-dimensional geoelectric model the Zmiyniy Island and adjacent horst uplifts was built. Practical significance. According to the results of this study the deep structure of the investigated region and its electrical conductivity, which displays the structural-tectonic features of the territory, can be studied. Furthermore, conductivity anomalies associates  with the activation of the fluid and degassing processes of the Earth.

1. Bugaenko I.V., Shumljanskaja L.A., Zaec L.N., Cvetkova T.A. Trehmernaja P-skorostnaja model' mantii Chernogo morja i prilegajushhej territorii [Three-dimensional P-velocity model of the mantle of the Black Sea and adjacent territories], Geofizicheskij zhurnal [Geophysical journal], 2008, no. 5, pp. 145-160.
2. Burahovich T.K., Kulik S.N. Model jelektroprovodnosti zemnoj kory Ukrainy [Conductivity model of the Ukrainian crust], Fizika Zemli [Physics of the Earth], 2000, no.10, pp. 48-56.
3. Burahovich T.K., Kulik S.N., Kushnir A.N., Zajcev G.N., Ganiev A.Z., Sheremet E.M., Nikolaev Ju.I., Nikolaev I.Ju. 3D geojelektricheskaja model Dobrudzhi i Preddobrudzhskogo progiba [3D geoelectric model of Dobrogea and Predobrogea deflection], Donec'k, Naukovі pracі UkrNDMІ NANU zbіrnik naukovih prac [UkrNIMI NAS], Ch. 2, 2011. 532 p.
4. Geologija shel'fa USSR. Tektonika [Shelf Geology of the USSR. Tectonics], Ed. E.F. Shnjukova, Kiev, Naukova Dumka [Scientific thought] 1987, 152 p.
5. Kaban M.K., Gravitacionnaja model' kory i verhnej mantii Severnoj Evrazii [The gravity model of the crust and upper mantle of Northern Eurasia], Rossijskij zhurnal nauk o Zemle [Russian Journal of Earth Sciences], Vol. 3, no. 2, 2001
https://doi.org/10.2205/2001ES000062
6. Kozlenko M.V., Kozlenko Ju.V., Lysynchuk D.V. Glubinnoe stroenie zemnoj kory zapadnoj chasti chernogo morja po rezul'tatam kompleksnoj pereinterpretacii geofizicheskih dannyh po profilju GSZ 25 [Deep crustal structure of western part of the Black Sea results from the comprehensive reinterpretation of geophysical data on the profile of the DSS 25], Geofizicheskij zhurnal [Geophysical journal], 2009, no. 6, pp. 77-91.
7. Korcenshtejn V.N. Vodonapornye sistemy krupnejshih gazovyh i gazokondensatnyh mestorozhdenij SSSR [Pouring of the largest gas and condensate fields of the USSR], Moskva, Nedra [Nedra], 1977, 247 p.
8. Kutas V.V., Omelchenko V.D., Ostrouhova O.A. Jepicentry zemletrjasenij na jugo-zapade Ukrainy [The epicenters of earthquakes in southwestern Ukraine] Geofizicheskij zhurnal [Geophysical journal], 2005, Vol. 27, no. 6, pp. 962-969.
9. Ladanivskij B.T. Algoritm obrabotki dannyh MTZ [The processing algorithm of magnetotelluric data], Tezisy dokladov Pjatyh geofizicheskih chtenij im. V.V. Fedynskogo Moskva [Abstracts Fifth geophysical readings them. VV Fedynskogo], 2003, pp.134 -135.
10. Letnikov F.A. Degazacija zemli kak global'nyj process samoorganizacii [Degassing of the Earth as a global process of self-organization], Degazacija Zemli: geodinamika, geofljuidy, neft' i gaz [Degassing of the Earth: Geodynamics, geofluids, oil and gas], GEOS, 2002. pp. 6-7.
11. Megerja V.M. Poisk i razvedka zalezhej uglevodorodov, kontroliruemyh geosolitonnoj degazaciej Zemli [Search and exploration of hydrocarbon deposits that controlled by geosoliton Earth degassing]. Moskva, Lokus Standi [Locus Stand], 2009, 256 p.
12. Pal'shin N.A. Opornyj razrez i jelektroprovodnost' verhnej mantii [The reference section of the electrical conductivity and the upper mantle] Tezisy Tret'ej mezhdunarodnoj shkoly-seminara po jelektromagnitnym zondirovanijam. Zvenigorod, 2-9 sentjabrja [Abstracts of the Third International Summer School on electromagnetic sounding. Zvenigorod, 2-9 September], 2007.
13. Semenov V.Ju. Obrabotka dannyh magnitotelluricheskogo zondirovanija [Processing of magnetotelluric sounding], Moskva, Nedra [Nedra], 1985, 133 p.
14. Starostenko V. I., Burahovich T.K., Kushnir A.N., Legostaeva O.V., Cvetkova T.A., Sheremet E.M., Shumljanskaja L.A. Vozmozhnaja priroda sejsmicheskoj aktivnosti nedr Preddobrudzhinskogo progiba i Severnoj Dobrudzhi [Possible nature of seismic surfaces of the Predobrogea deflection and Northern Dobrogea], Geofizicheskij zhurnal [Geophysical journal], 2013, Vol. 35, no.1, pp. 61-75.
15. Starostenko V.I., Pashkevich I.K. Makarenko I.B., Rusakov O.M., Kutas R.I. Legostaeva O.V. Razlomnaja tektonika konsolidirovannoj kory severo-zapadnogo shel'fa Chernogo morja [Faulting of consolidated crust of north-western shelf of the Black Sea], Geofizicheskij zhurnal [Geophysical journal], 2005, no. 2, pp. 195-207.
16. Cvetkova T.A., Bugaenko I.V. Sejsmotomografija mantii pod Vostochno-Evropejskoj platformoj - mantijnye skorostnye granicy. Geofizicheskij zhurnal (v pechati).
17. Shirkov B.I., Kushnir A. N. Geojelektricheskie issledovanija o. Zmeinyj i sejsmichnost'ju [Geoelectric research on Zmiyniy Island and seismicity] Materialy konferencii «Geoinformatika - teoreticheskie i prikladnyj aspekty»: Kiev, 13-16 maja [International Conference "Geoinformatics - Theoretical and Applied Aspects": Kiev, 13-16 May 2013] 2013.
18. Kutas R.I., Kobolеv V.P., Tsvyashchenko V.A. Heat flow and geothermal modl of the Black sea depression Tectonophysics, 1998, 291p., 91-100.p
https://doi.org/10.1016/S0040-1951(98)00033-X
19. Randall L. Macki, J.Torquil Smith, Theodore R. Madden. Three-dimentional electromagnetic modeling using finite difference equations: The megnetotelluric example. Radio Science, V. 29, N 4, 1994, pp. 923-935.
https://doi.org/10.1029/94RS00326
20. Varentsov Iv.M. Golubev N.G. Martanus E.R. et. al. Magnetotelluric processing system PRC-MTMV its applications // Russian-German Seminar "Actual Problems in Deep EM Studies" (Extended Abstracts) Moscow. OIFZ RAN. 1997, pp. 51-52.
21. Varentsov Iv.M., Sokolova E. Yu., the BEAR Working Group. Data processing techniques for the array EM sounding.// XV Working on EM Induction in the Earth. Cabo Frio. Brazil. 2000, P. 79.