Analysis of the results of vertical crust movement velocities of the European coastline per the tide gauge and GNSS-observation data

: pp.18 - 35
Received: October 15, 2016
Department of Higher Geodesy and Astronomy of Lviv Polytechnic National University
Department of Higher Geodesy and Astronomy, Lviv Polytechnic National University

Purpose. The purpose of the study is to detect and investigate the differences in determining vertical crust movement velocities (VCMV) in Europe applying two independent methods: tide gauge and GNSS-observations. Methodology. As the result of the average crust movement velocity calculation applying tide gauge ( ± ) and GNSS-observations ( ± ) the interpolation of vertical crust movement velocities has been conducted (  and ),at points equally set-along the European coastline (every 10 km), their mean-square error (  and ) has been determined. The research has been conducted separately: one has been based on tide gauge observation and the other has been based on GNSS-observations. Results. Based on processing the results of tide gauge and GNSS-observations the difference  (mm/year) between vertical crust movement velocities has been determined. Having analyzed these differences, it has been found that it is typical for the whole European territory. The greatest t value of it is 2.6±0.8 mm/year on the territory of Fennoscandia, the least one is on the territory of the Netherlands (0.6±0.2 mm/year) and the Balkans (0.6±0.1 mm/year). To say,  varies from 0.6 to 2.6 mm/year. The mean square error of  differences varies from 0.1 to 0.9 mm/year. The average  value on the European territory is 1.8± 0.5 mm/year. The results of determination of  are summarized in 4 set units: the territories which are almost identical in accuracy of determining the value of average  differences. The first unit (I) comprises the territory of Fennoscandia and Central Europe ( = 2.4±0.6 mm/year), the second one (II) comprises the territory of Western Europe (= 0.7±0.2 mm/year), the third unit (III) comprises the territory of the United Kingdom and Southern Europe (= 1.5±0.3 mm/year), the fourth one (IV) comprises the territory of Appenines Peninsula (= 1.0±0.3 mm/year). This component has systematic and constant features in certain areas and is always positive. The main factor causing the appearance of  is obviously the increase of absolute global sea level, which is manifestated in tide gauge observations as well as salinity and wind impact. Scientific novelty. The results of the study give the possibility of common balancing of tide gauge and GNSS-observations in order to determine vertical-crust movement velocities along the coastline taking into account relevant systematic error  and the possibility to predict vertical  crust movement velocity. Practical significance. As the result of the study the systematic difference  between the results of the determination of vertical crust movement velocities applying tide gauge  and GNSS-observations has been set. Taking into consideration this difference gives the possibility to predict changes of the coastline position and sea level changes. It also presents a significant socio-economic impact on people living not far from the seacoast. Changing the position of the coastline is also significant while designing and constructing hydrotechnical structures and ports at seacoasts.

1. Lyskov, Y. A., Musykhyn, V. V., Kashnykov Yu. A. Monytorynh deformatsyonnykh protsessov zemnoi poverkhnosty metodamy radarnoi ynterferometryy. Vistnyk Permskoho natsynatsionalnoho yssledovatelskoho polytekhnycheskoho unyversyteta. Heolohyia. Neftehazovoe y hornoe delo. 2010, no. 5, pp. 11–16.
2. Tretyak, K. R, Dosyn, S. I. Rekonstruktsiya vertikalnih ruhiv zemnoii kori za danimi mareografichnih sposterezhen [Reconstruction of vertical movements of the earth's crust, according to tide gauge observations]. Geodynamics, 2014, 2(17), pp. 7–29.
3. Ablain, M., Cazenave, A. et al. Improved sea level record over the satellite altimetry era (1993–2010) from the Climate Change Initiative project. Ocean Science, 2015, 11, 67–82, doi:10.5194/os-11-67-2015.
4. Antonov, J. I., Levitus, S. and Boyer, T. P. Steric sea level variations during 1957-1994: Importance of salinity. Journal of Geophysical Research, 2002, 107(C12), 8013, doi:10.1029/2001JC000964.
5. Barbot, S., Hamiel, Y., Fialko, Y. Space geodetic investigation of the coseismic and postseismic deformation due to the 2003 Mw7.2 Altai earthquake: Implications for the local lithospheric rheology. Journal of Geophysical Research, 2008, Vol. 113, B03403, doi:10.1029/2007JB005063.
6. Bindoff, N. L. et al. Observations: oceanic climate and sea level, in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergouvernmental Panel on Climate Change, eds Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M. & Miller, H.L., Cambridge University Press, Cambridge, UK, and New York, USA, 2007.
7. Bingley, R. M., Dodson, A. H., Penna, N. T., Teferle, F. N. and Baker, T. F. Monitoring the Vertical Land Movement Component of Changes in Mean Sea Level Using GPS: Results from Tide Gauges in the UK. Journal of Geospatial Engineering. 2001, Vol. 3(PART 1), pp. 9–20.
8. Bouin, M. N. and Wöppelmann, G. Land motion estimates from GPS at tide gauges: a geophysical evaluation. Geophysical Journal International, 2010, 180, pp. 193–209. doi: 10.1111/j.1365-246X.2009.04411.x
9. Brooks, B. A., Merrifield, M. A., Foster, J., Werner, C. L., Gomez, F., Bevis, M. and Gill, S. Space geodetic determination of spatial variability in relative sea level change, Los Angeles basin. Geophysical Research Letters, 2007, Vol. 34, L01611, doi:10.1029/2006GL028171.
10. Çakir, Z., Chabalier, J.-B., Armijo, R., Meyer, B., Barka, A., Peltzer, G. Coseismic and early post-seismic slip associated with the 1999 Izmit earthquake (Turkey), from SAR interferometry and tectonic field observations. Geophysical Journal International. 2003,doi: 10.1046/j.1365-246X.2003.02001.x.
11. Cazenave, A. and Nerem, R. S. Present-day sea level change: observations and causes. Reviews of Geophysics, 2004, 42, RG3001, doi:10.1029/2003RG000139.
12. Cogley, J. C. Geodetic and direct mass balance measurements: Comparison and joint analysis, Annals of Glaciology, 2009, No. 50, p. 96–100, doi:10.3189/172756409787769744
13. Colesanti, C., Wasowski, J. Investigating landslides with space-borne Synthetic Aperture Radar (SAR) Interferometry. Engineering Geology, 2006, No. 88, p. 173–199.
14. Farina, P., Moretti, S., Colombo, D., Fumagalli A., Manunta P. Landslide risk analysis by means of remote sensing techniques: results from the ESA/SLAM project. Geoscience and Remote Sensing Symposium, IGARSS'04. Proceedings IEEE International, 2004.
15. Foumelis, M., Parcharidis I., Lagios, E., Voulgaris N. Evolution of post-seismic ground deformation of the Athens 1999 earthquake observed by SAR interferometry. Journal of Applied Geophysics, 2009, doi: 10.1016/j.jappgeo.2009.02.007.
16. Gardner, A. S., et al. A reconciled estimate of glacier contributions to sea level rise, 2003-2009. Science, 2013, No. 340, p. 852–857, doi:10.1126/science.1234532.
17. Gaudio, C. D., Aquino, I., Ricciardi, G. P., Ricco, C., Scandone, R. Unrest episodes at Campi Flegrei: a reconstruction of vertical ground movements during 1905–2009. Journal of Volcanology and Geothermal Research, 2010, 195, pp. 48–56.
18. Hobbs, W. R., Willis, J. K. Detection of an observed 135 year ocean temperature change from limited data. Geophysical Research Letters, 2013, 40, p. 2252–2258, doi:10.1002/grl.50370.
19. Hsieh, Ch.-Sh., Tian-Yuan, Sh., Jyr-Ching, H., Hsin, T., Mong-Han, H., Jacques, A. Using differential SAR interferometry to map land subsidence: a case study in the Pingtung Plain of SW Taiwan. Natural Hazards, 2011, Volume 58, Issue 3, p. 1311–1332, doi 10.1007/s11069-011-9734-7.
20. Johansson, M., Kahma, K., Boman, H. An improved estimate for the long-term mean sea level on the Finnish coast. Geophysica, 2003, 39, p. 51–73.
21. Johansson, M., Kahma, K., Boman, H., Launiainen, J., Scenarios for sea level on the Finnish coast. Boreal Environmental Research, 2004, 9, p. 153–166.
22. Johansson, M., Pellikka, H., Kahma K., Ruosteenoja, K. Global sea level rise scenarios adapted to the Finnish coast. Journal of Marine Systems, 2012, 129, p. 35–46, doi:10.1016/j.jmarsys.2012.08.007.
23. Kumar, V., G. Venkataraman; Y., Rao, S. SAR interferometry and Speckle tracking approach for glacier velocity estimation using ERS-1/2 and TerraSAR-X spotlight high resolution data. Conference Paper August 2009 DOI:10.1109/IGARSS.2009.5417663, Source: IEEE Xplore Conference: Geoscience and Remote Sensing Symposium,2009 IEEE International, IGARSS 2009, Vol. 5.
24. Kuo, C. Y., Shum, C. K., Braun, A., Mitrovica J. X. Vertical crustal motion determined by satellite altimetry and tide gauge data in Fennoscandia. Geophysical Research Letters, 2004, Vol. 31, L01608, doi:10.1029/2003GL019106.
25. Kuo, C. Y., Shum, C., Braun, A., Cheng, K. C., Yi, Y. Vertical motion determined using satellite altimetry and tide gauges. Terrrestrial, Atmospheric and Oceanic Sciences, 2008, 19, p. 21–35.
26. Levitus, S., Stephens, C., Antonov, J. I, Boyer, T. P. Yearly and year – Season upper ocean temperature anomaly fields, 1948-1998, NOAA Atlas NESDIS 40, Natl. Oceanic and Atmos. Admin., Silver Spring, Md. 2000, (Available at http://
27. Meisina, C., Zucca, F., Conconi, F., Verri, F., Fossati, D., Ceriani, M., Allievi, J. Use of Permanent Scatterers technique for large-scale massmovement investigation. Quaternary International, 2007, 171-172, pp.90–107.
28. Morice, C. P., Kennedy, J. J., Rayner, N. A., Jones, P. D. Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set, Journal of Geophysical Research, 2012, 117, D08101, doi:10.1029/2011JD017187.
29. Nerem, R. S. and Mitchum, G. T. Estimates of vertical crustal motion derived from differences of TOPEX/POSEIDON and tide gauge sea level measurements. Geophysical Research Letter, 2002, Vol. 29, No. 19, doi:10.1029/2002GL015037.
30. Nerem, R. S., and Mitchum G. T. Observations of sea level change from satellite altimetry, in Sea Level Rise: History and Consequences, edited by B. C. Douglas, M. S. Kearney, and S. P. Leatherman, 2001, pp. 121–163, Academic, San Diego, Calif.
31. Plant, J. A., Whittaker, A., Demetriades, A., De Vivo, B., Lexa J. The Geological and Tectonic Framework of Europe. In: Salminen R (ed) Geochemical Atlas of Europe. Part 1: background information, methodology and maps. Geological Survey of Finland, Espoo, Finland, 2003.
32. Pugh D. T. Tides, Surges and Mean Sea-Level. John Wiley & Sons, 1987.
33. Santamaría-Gómez, A., Gravelle, M., Wöppelmann, G. Long-term vertical land motion from double-differenced tide gauge and satellite altimetry data. Journal of Geodesy, 2014, Volume 88, Issue 3, 207–222, doi: 10.1007/s00190-013-0677-5.
34. Shepherd, A., et al. A reconciled estimate of ice-sheet mass balance, Science, 2012, 338(6111), 1183–1189, doi:10.1126/science.1228102.
35. Tal E. The Science of Sea Level Rise and the Impact of the Gulf Stream. July 29, The Latest in Sea Level Rise Science, 2016,
36. Wadhams, P., Hughes N., and Rodrigues J. Arctic sea ice thickness characteristics in winter 2004 and 2007 from submarine sonar transects, J. Geophys. Res., 2011, 116, C00E02, doi:10.1029/2011JC006982.
37. Wahl, T., Haigh, I. D., Dangendorf, S., Jensen, J. Inter-annual and long-term mean sea level changes along the North Sea Coastline. Journal of Coastal Research, 2013, Special Issue No. 65, pp. 1987–1992, ISSN 0749-0208.
38. Zervas, C., Gill, S., Sweet, W. Estimating Vertical Land Motion from Long-Term Tide Gauge Records. Technical Report National Ocean Service (NOS) CO-OPS 065, 2013, 22 p.
39. Zhongwei, Y., Tsimplis, M. N., and Woolf, D. Analysis of the relationship between the North Atlantic oscillation and sea-level changes in northwest Europe. Int. J. Climatol. 2004, 24, pp. 743–758. doi: 10.1002/joc.1035.