LIMITATIONS IN FATIGUE STRENGTH EVALUATION OF THE WEB-FLANGE CONNECTION OF STEEL RUNWAY BEAMS - А REVIEW

2024;
: 81-87
https://doi.org/10.23939/jtbp2024.02.0081
Received: September 30, 2024
Revised: October 28, 2024
Accepted: November 01, 2024
1
Lviv Polytechnic National University, Department of Building Constructions and Bridges
2
Lviv Polytechnic National University, Department of building construction and bridges

This study reviews the current state of research and limitations on the fatigue strength of web-flange connections in steel runway beams for overhead cranes. It evaluates key factors influencing fatigue strength, including stress-strain behavior, notch classifications, and various web-flange configurations (welded, rolled, combined). The research stresses the need for accurate fatigue life assessments, particularly for both new and older structures built with simplified standards. Key findings show the impact of notch classifications and stress interactions due to bending, tensile, and compressive forces. The study aims to improve calculation methods, offering recommendations for refining fatigue verification techniques, and assesses connection configurations' effectiveness in achieving desired fatigue life. The practical implications point to increased steel crane runway beams' durability through better fatigue life prediction and localized stress analysis.

Transparency Market Research. Overhead Crane Market. Wilmington : Transparency Market Research, Inc., 2021. Retrieved from: https://www.transparencymarketresearch.com/overhead-cranes-market.html 

Melchers, R.E., & Beck, A.T. (2018). Structural reliability analysis and prediction (3rd edition). Hoboken, NJ: Wiley

NEN-EN 13001-3-1 Cranes - General Design - Part 3-1: Limit States and proof competence of steel structure. Brussels : CEN, 2018

  1. 1993-1-9 (2005): Eurocode 3. Design of steel structures - Part 1-9: Fatigue. Brussels : CEN, 2005

EN 1991-3 (2006): Eurocode 1. Actions on structures - Part 3: Actions induced by cranes and machinery. Brussels : CEN, 2006

EN 1993-6 (2007): Eurocode 3. Design of steel structures - Part 6: Crane supporting structures. Brussels : CEN, 2007

  1. V.2.6-198:2014 zi zminoiu №1: Stalevi konstruktsii. Normy proektuvannia. Vyd. ofits. Kyiv: Ministerstvo rehionalnoho rozvytku ta budivnytstva Ukrainy, 2022
  2. V.1.2-2:2006: Systema zapezpecheennia nadiynosti ta bezpeky budivelnyh obiektiv. Navantazhennia i vplyvy. Normy proektuvannia. Vyd. ofits. Kyiv: Ministerstvo rehionalnoho rozvytku ta budivnytstva Ukrainy, 2006.
  3. 15018 Cranes – Principles relating to steel structures. Brussels : ISO, 1984.

NEN 2019 Cranes – The metal structure. Delft: NNI,  1984.

FEM 1.001 Rules for th design of hoisting appliances. Paris: Technical Committee of the F.E.M,  1987

IIW document IIW-1823-07 ex XIII-2151r4-07/XV-1254r4-07: Recommendations for Fatigue Design of Welded Joints and Components. Valid from 2008-12-01.  Paris: IIW, 2008.

Rykaluk K. , Hotała E. Inicjowanie pęknięć zmęczeniowych w blachownicowych belkach podsuwnicowych. Materiały Budowlane. 2014. Retrieved from: https://www.materialybudowlane.info.pl/images/2014/05/84-86.pdf

Citarelli S., Feldmann M. Derivation of a new fatigue class for top flange to web junctions of runway beams. Procedia Structural Integrity. 2019. Vol. 19, pp. 336–345. Retrieved from: https://doi.org/10.1016/j.prostr.2019.12.037

D’Angelo, L. Probabilistic approach for fatigue evaluation of welded connections with application to road steel bridges. Thèse n. 6827. 2015. Retrieved from: https://infoscience.epfl.ch/server/api/core/bitstreams/0a0ad4c4-1a6d-46b2-8629-c8d29b1dec8f/content

D'Angelo et al. S-N-P Fatigue Curves using Maximum Likelihood. Eurosteel. 2014. Retrieved from: https://core.ac.uk/download/pdf/148007903.pdf

Pollak, R.D. and Palazotto, A.N. A comparison of maximum likelihood models for fatigue strength
characterization in materials exihibiting a fatigue limit. Probabilistic Engineering Mechanics. 2009. Vol. 24, pp. 236-241. Retrieved from: https://doi.org/10.1016/j.probengmech.2008.06.006

Polus Ł., Chybiński M., Kurzawa Z. Local vertical compressive stress in the crane runway beam web. Budownictwo i Architektura. 2022. Vol. 21, No. 4, pp. 051–066. : https://doi.org/10.35784/bud-arch.3231 

Marcinczak K. Redukcja naprężeń w środniku belki podsuwnicowej. Builder 9. 2017. Retrieved from: file:///C:/Users/Roman%20Samchuk/Downloads/Marcinczak_K_Redukcja_9_2017.pdf

Rykaluk K., Marcinczak K., Rowiński S. Fatigue hazards in welded plate crane runway girders – Locations, causes and calculations. Archives of Civil and Mechanical Engineering. 2018. Vol. 18, No. 1, pp. 69–82. : https://doi.org/10.1016/j.acme.2017.05.003 

Petrosian O.M. Vplyv ekspluatatsiinykh chynnykiv na napruzhenyi stan verkhnoi zony stinky pidkranovoi balky. Natsionalna biblioteka Ukrainy imeni V.I. Vernadskoho.2002. Retrieved from: http://www.irbis-nbuv.gov.ua/publ/REF-0000221996

O. Caglayan et al. Fatigue life prediction of existing crane runway girders. Journal of Constructional Steel Research. 2010. Vol. 66, No. 10, pp. 1164–1173. Retrieved from: https://doi.org/10.1016/j.jcsr.2010.04.009 

Tong X. et al. Fatigue Strength of End-Coped Crane Runway Girders. Journal of Structural Engineering. 2007. Retrieved from: DOI: 10.1061/(ASCE)0733-9445(2007)133:12(1783)

Kettler M., Kiem F., Unterweger H. Local stresses in retrofitted crane runway girders with boxed upper flange due to eccentric wheel loading. Structures. 2020. Vol. 25, pp. 646–659. : https://doi.org/10.1016/j.istruc.2020.03.024

Kettler M. et al. Local stresses in webs of crane runway girders: Tests and numerical calculations. Journal of Constructional Steel Research. 2017. Vol. 139, pp. 188-201. Retrieved from:

https://www.sciencedirect.com/science/article/abs/pii/S0143974X17308015?via%3Dihub