This study reviews the current state of research and limitations on the fatigue strength of web-flange connections in steel runway beams for overhead cranes. It evaluates key factors influencing fatigue strength, including stress-strain behavior, notch classifications, and various web-flange configurations (welded, rolled, combined). The research stresses the need for accurate fatigue life assessments, particularly for both new and older structures built with simplified standards. Key findings show the impact of notch classifications and stress interactions due to bending, tensile, and compressive forces. The study aims to improve calculation methods, offering recommendations for refining fatigue verification techniques, and assesses connection configurations' effectiveness in achieving desired fatigue life. The practical implications point to increased steel crane runway beams' durability through better fatigue life prediction and localized stress analysis.
Transparency Market Research. Overhead Crane Market. Wilmington : Transparency Market Research, Inc., 2021. Retrieved from: https://www.transparencymarketresearch.com/overhead-cranes-market.html
Melchers, R.E., & Beck, A.T. (2018). Structural reliability analysis and prediction (3rd edition). Hoboken, NJ: Wiley
https://doi.org/10.1002/9781119266105
NEN-EN 13001-3-1 Cranes - General Design - Part 3-1: Limit States and proof competence of steel structure. Brussels : CEN, 2018
EN 1993-1-9 (2005): Eurocode 3. Design of steel structures - Part 1-9: Fatigue. Brussels : CEN, 2005
EN 1991-3 (2006): Eurocode 1. Actions on structures - Part 3: Actions induced by cranes and machinery. Brussels : CEN, 2006
EN 1993-6 (2007): Eurocode 3. Design of steel structures - Part 6: Crane supporting structures. Brussels : CEN, 2007
DBN V.2.6-198:2014 zi zminoiu №1: Stalevi konstruktsii. Normy proektuvannia. Vyd. ofits. Kyiv: Ministerstvo rehionalnoho rozvytku ta budivnytstva Ukrainy, 2022
DBN V.1.2-2:2006: Systema zapezpecheennia nadiynosti ta bezpeky budivelnyh obiektiv. Navantazhennia i vplyvy. Normy proektuvannia. Vyd. ofits. Kyiv: Ministerstvo rehionalnoho rozvytku ta budivnytstva Ukrainy, 2006.
DIN 15018 Cranes - Principles relating to steel structures. Brussels : ISO, 1984.
NEN 2019 Cranes - The metal structure. Delft: NNI, 1984.
FEM 1.001 Rules for th design of hoisting appliances. Paris: Technical Committee of the F.E.M, 1987
IIW document IIW-1823-07 ex XIII-2151r4-07/XV-1254r4-07: Recommendations for Fatigue Design of Welded Joints and Components. Valid from 2008-12-01. Paris: IIW, 2008.
Rykaluk K. , Hotała E. Inicjowanie pęknięć zmęczeniowych w blachownicowych belkach podsuwnicowych. Materiały Budowlane. 2014. Retrieved from: https://www.materialybudowlane.info.pl/images/2014/05/84-86.pdf
Citarelli S., Feldmann M. Derivation of a new fatigue class for top flange to web junctions of runway beams. Procedia Structural Integrity. 2019. Vol. 19, pp. 336-345. Retrieved from: https://doi.org/10.1016/j.prostr.2019.12.037
https://doi.org/10.1016/j.prostr.2019.12.037
D'Angelo, L. Probabilistic approach for fatigue evaluation of welded connections with application to road steel bridges. Thèse n. 6827. 2015. Retrieved from: https://infoscience.epfl.ch/server/api/core/bitstreams/0a0ad4c4-1a6d-46b...
D'Angelo et al. S-N-P Fatigue Curves using Maximum Likelihood. Eurosteel. 2014. Retrieved from: https://core.ac.uk/download/pdf/148007903.pdf
Pollak, R.D. and Palazotto, A.N. A comparison of maximum likelihood models for fatigue strength
characterization in materials exihibiting a fatigue limit. Probabilistic Engineering Mechanics. 2009. Vol. 24, pp. 236-241. Retrieved from: https://doi.org/10.1016/j.probengmech.2008.06.006
https://doi.org/10.1016/j.probengmech.2008.06.006
Polus Ł., Chybiński M., Kurzawa Z. Local vertical compressive stress in the crane runway beam web. Budownictwo i Architektura. 2022. Vol. 21, No. 4, pp. 051-066. Retrieved from: https://doi.org/10.35784/bud-arch.3231
https://doi.org/10.35784/bud-arch.3231
Marcinczak K. Redukcja naprężeń w środniku belki podsuwnicowej. Builder 9. 2017. Retrieved from: file:///C:/Users/Roman%20Samchuk/Downloads/Marcinczak_K_Redukcja_9_2017.pdf
Rykaluk K., Marcinczak K., Rowiński S. Fatigue hazards in welded plate crane runway girders - Locations, causes and calculations. Archives of Civil and Mechanical Engineering. 2018. Vol. 18, No. 1, pp. 69-82. Retrieved from: https://doi.org/10.1016/j.acme.2017.05.003
https://doi.org/10.1016/j.acme.2017.05.003
Petrosian O.M. Vplyv ekspluatatsiinykh chynnykiv na napruzhenyi stan verkhnoi zony stinky pidkranovoi balky. Natsionalna biblioteka Ukrainy imeni V.I. Vernadskoho.2002. Retrieved from: http://www.irbis-nbuv.gov.ua/publ/REF-0000221996
O. Caglayan et al. Fatigue life prediction of existing crane runway girders. Journal of Constructional Steel Research. 2010. Vol. 66, No. 10, pp. 1164-1173. Retrieved from: https://doi.org/10.1016/j.jcsr.2010.04.009
https://doi.org/10.1016/j.jcsr.2010.04.009
Tong X. et al. Fatigue Strength of End-Coped Crane Runway Girders. Journal of Structural Engineering. 2007. Retrieved from: DOI: 10.1061/(ASCE)0733-9445(2007)133:12(1783)
https://doi.org/10.1061/(ASCE)0733-9445(2007)133:12(1783)
Kettler M., Kiem F., Unterweger H. Local stresses in retrofitted crane runway girders with boxed upper flange due to eccentric wheel loading. Structures. 2020. Vol. 25, pp. 646-659. Retrieved from: https://doi.org/10.1016/j.istruc.2020.03.024
https://doi.org/10.1016/j.istruc.2020.03.024
Kettler M. et al. Laboratory and numerical tests on real crane runway girder with box section. Journal of Constructional Steel Research. 2019. Vol. 160, pp. 540-558. Retrieved from: https://doi.org/10.1016/j.jcsr.2019.06.002
https://doi.org/10.1016/j.jcsr.2019.06.002
Kettler M. et al. Local stresses in webs of crane runway girders: Tests and numerical calculations. Journal of Constructional Steel Research. 2017. Vol. 139, pp. 188-201. Retrieved from:
https://doi.org/10.1016/j.jcsr.2017.09.016
https://www.sciencedirect.com/science/article/abs/pii/S0143974X17308015?...