кінетика

Kinetic Regularities of the Filtration Drying of Barley Brewer’s Spent Grain

The paper describes the study of the kinetics of filtration drying of barley brewer’s spent grain. The dependencies of the process at different parameters of the stationary layer and the heating agent are presented: different heights of the wet material H (40 mm, 80 mm, 120 mm, and 160 mm), different temperatures of the heating agent T (50 °C, 70 °C, 80 °C, and 90 °C), and the velocities of the heating agent through the stationary layer of material v0 (1.26 m/s, 1.55 m/s, 1.81 m/s, 2.31 m/s, and 2.82 m/s).

Kinetic Aspects of Catalytic Interactions Involving Pentyl Acetate and Ethanolamine

A conversion scheme for pentyl acetate, ethanolamine, and the products resulting from their interaction through aminolysis, transesterification, and O-N-acyl migration reactions catalyzed by homogeneous and heterogeneous Brønsted-Lowry bases and acids is proposed. It has been determined that acid and base catalysts significantly enhance the aminolysis reaction of esters with amino alcohols when compared to the non-catalytic process. The impact of the catalyst on each reaction has been assessed.

Kinetic Model of the Process of Polycondensation of Concentrated Phenols of Coal Tar with Formaldehyde

Phenolformaldehyde resins were obtained by polycondensation of concentrated phenols with formaldehyde in the presence of hydrochloric acid. Concentration of phenols is carried out by treating the phenolic fraction of coal tar with an aqueous solution of sodium hydroxide followed by neutralization of water-soluble phenolates with hydrochloric acid. The kinetic dependences of resin yield and softening temperature on the duration of the process at 333, 353, and 373 K were obtained.

Study on Heterogeneous Catalytic Oxidative Dehydrogenation of Isopropylbenzene to α-Methylstyrene

The influence of the FeBiMoO catalysts composition on their properties in the oxidative dehydrogenation reaction of isopropylbenzene has been studied. The catalyst with the atomic ratio of active components Fe : Bi : Mo = 2 : 1 :2 was found to be the optimum for the maximum yield of α-methylstyrene. The assumption that the improvement of catalytic properties is due to the formation of a ternary compound Fe2Bi3Mo2O12, which provides optimal acid-base properties of the catalytic surface, has been approved.

Bio-Sorbent Derived from Annona Squamosa for the Removal of Methyl Red Dye in Polluted Waters: A Study on Adsorption Potential

Sorbent got from leaves and barks of Annona squamosa has been investigated for its sorption capacity towards Methyl Red (MR) utilizing artificially arranged recreated squander waters. Different components influencing adsorption, viz., initial color concentration, contact time, adsorbent dosage, along with the impact of temperature were assessed. The equilibrium of adsorption was demonstrated by Freundlich; Langmuir, Temkin, and Dubinin-Radushkevich isotherms.

STUDY OF KINETICS AND ENERGY SAVING METHOD IN THE PROCESS OF DRYING CANDIED FRUITS FROM PEARS

The kinetics of the process of drying hot (80°C) and cold (20°C) candied pears were studied. The drying coefficient is found and an analytical dependence is derived for the drying time calculation. Experimental data of the change in the temperature of the thermal agent along with the height of the candied fruit layer was obtained.

Superhigh Adsorption of Cadmium(II) Ions onto Surface Modified Nano Zerovalent Iron Composite (CNS-nZVI): Characterization, Adsorption Kinetics and Isotherm Studies

The efficiency of surface modified nanoscale zerovalent iron (nZVI) composite by cashew nut shell (CNS) was tested for the removal of cadmium ions from the aqueous solutions. 2 g/l CNS-nZVI was efficient for 98% removal. The adsorption capacity was 35.58 mg/g. The Freundlich isotherm (R2 = 0.9769) and the pseudo-second order adsorption kinetics data fitted well. This proved CNS-nZVI has a high removal efficiency for Cd(II) from aqueous solutions.

Kinetic Model for Dissolution of Cement Copper in Sulfuric Acid Solutions Containing Cupric Ions

In this paper, the dissolution kinetics of cement copper powder in sulfuric acid solutions containing cupric ions was examined. It was observed that the dissolution rate of copper increased with increasing the acid concentration, temperature, and stirring speed. It was determined that the dissolution rate of copper enhanced with increasing the cupric ion concentration up to 0.025 M. It was found that the temperature and concentration of cupric ion had more considerable effects on the dissolution of copper powder.

SIMULATION OF ION EXCHANGE INTERACTION KINETICS IN THE CLINOPTYLOLITE - AMMONIUM ION SYSTEM

The kinetics of adsorption of ammonium ions under dynamic conditions has been studied. A mathematical model of the process was built. The mass transfer coefficient was calculated depending on the intensity of the change of location. It was established that ion exchange occurs in external and internal diffusion regions. The rate constants of ion exchange for the region of external and internal diffusion were calculated.

Kinetic Regularities and Mathematical Modelling of Potassium Chloride Dissolution

The dissolution process of potassium chloride particles in the apparatus with two-blade mechanical stirrer was investigated and the mass transfer coefficient was determined. The experimental results were generalized by criterion dependence. The independence of the mass transfer coefficient from the solid particles diameter was confirmed. A countercurrent process of potassium salt dissolution in two apparatuses with a mechanical stirring was considered. A mathematical model for countercurrent dissolution was developed and the efficiency of this process was determined.