A discrete mathematical model SIRS with the evolution of regions to attack infectious diseases

2023;
: pp. 1071–1083
https://doi.org/10.23939/mmc2023.04.1071
Received: November 21, 2022
Revised: November 21, 2023
Accepted: November 23, 2023

Mathematical Modeling and Computing, Vol. 10, No. 4, pp. 1071–1083 (2023)

1
Laboratory of Analysis, Modeling and Simulation, Casablanca, Morocco
2
Laboratory of Analysis, Modeling and Simulation, Casablanca, Morocco
3
Laboratory of Analysis, Modeling and Simulation, Casablanca, Morocco
4
Laboratory of Analysis, Modeling and Simulation, Casablanca, Morocco
5
Laboratory of Analysis, Modeling and Simulation, Casablanca, Morocco

This paper presents a new SIRS mathematical model describing the evolution of an infectious disease, assuming that the spatial supports of this infection are also evolutionary and obey a compartmental model.  We propose four control strategies to manage the spread of the disease among individuals and regions.  The Pontryagin maximum principle is employed to characterize the optimal controls, and the optimality system is solved using an iterative approach.  Finally, numerical simulations are conducted to validate the theoretical analysis using MATLAB.

  1. Watts S.  Epidemics and History.  Disease, Power and Imperialism.  Yale University Press (1997).
  2. Hays J. N.  Epidemics and Pandemics: Their Impacts on Human History.  ABC-CLIO (2005).
  3. Kiple K. F.  Epidemics and History: Disease, Power, and Imperialism by Sheldon Watts.  Journal of Interdisciplinary History.  30 (1), 104–105 (1999).
  4. Sahneh F. D., Scoglio C.  Epidemic spread in human networks.  2011 50th IEEE Conference on Decision and Control and European Control Conference. 3008–3013 (2011).
  5. Huber V.  Pandemics and the politics of difference: Rewriting the history of internationalism through nineteenth-century cholera. Journal of Global History.  15 (3), 394–407 (2020).
  6. De Sousa J. D., Müller V., Lemey P., Vandamme A. M.  High GUD incidence in the early 20th century created a particularly permissive time window for the origin and initial spread of epidemic HIV strains.  PloS One.  5 (4), (2010).
  7. Ndaïrou F., Area I., Nieto J. J., Torres D. F. M.  Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan.  Chaos, Solitons & Fractals.  135, 109846 (2020).
  8. Brauer F., Driessche P., Wu J.  Mathematical Epidemiology. Vol. 1945, Springer (2008).
  9. Goffman W.  An epidemic process in an open population.  Nature.  205 (4973), 831–832 (1965).
  10. Grassberger P.  On the critical behavior of the general epidemic process and dynamical percolation.  Mathematical Biosciences.  63 (2), 157–172 (1983).
  11. Elliot P., Wakefield J. C., Best N. G., Briggs D. J., et al.  Spatial Epidemiology: Methods and Applications. Oxford University Press (2000).
  12. Pybus O. G., Suchard M. A., Lemey P., Bernardin F. J., Rambaut A., Crawford F. W., Gray R. R., Arinaminpathy N., Stramer S. L., Busch M. P., Delwart E. L.  Unifying the spatial epidemiology and molecular evolution of emerging epidemics.  Proceedings of the national academy of sciences.  109 (37), 15066–15071 (2012).
  13. Okabe Y., Shudo A.  A mathematical model of epidemics – A tutorial for students.  Mathematics.  8 (7), 1174 (2020).
  14. Chowell G., Sattenspiel L., Bansal S., Viboud C.  Mathematical models to characterize early epidemic growth: A review.  Physics of Life Reviews.  18, 66–97 (2016).
  15. Zakary O., Rachik M., Elmouki I.  On the analysis of a multi-regions discrete SIR epidemic model: an optimal control approach.  International Journal of Dynamics and Control.  5 (3), 917–930 (2017).
  16. Marouane K., Ben Rhila S., Kouidere A., Rachik M.  Tikhonov regularization for a spatiotemporal model of the human monkeypox outbreak.  Mathematical Modeling and Computing. 10 (3), 37–72 (2023).
  17. Cai Y., Kang Y., Banerjee M., Wang W.  A stochastic SIRS epidemic model with infectious force under intervention strategies.  Journal of Differential Equations.  259 (12), 7463–7502 (2015).
  18. Vargas-De-León C.  On the global stability of SIS, SIR and SIRS epidemic models with standard incidence. Chaos, Solitons & Fractals.  44 (12), 1106–1110 (2011).
  19. Kutyrev V., Popova A. Y., Smolensky V. Y., Ezhlova E., Demina Yu V., Safronov V., Karnaukhov I., Ivanova A., Shcherbakova S.  Epidemiological features of new coronavirus infection (COVID-19).  Communication 1: Modes of implementation of preventive and anti-epidemic measures.  Problems of Particularly Dangerous Infections.  1, 6–13 (2020).
  20. Wilder-Smith A., Gubler D. J., Weaver S. C., Monath T. P., Heymann D. L., Scott T. W.  Epidemic arboviral diseases: priorities for research and public health.  The Lancet Infectious Diseases.  17 (3), e101–e106 (2017).
  21. Zakary O., Rachik M., Elmouki I.  A multi-regional epidemic model for controlling the spread of Ebola: awareness, treatment, and travel-blocking optimal control approaches.  Mathematical Methods in the Applied Sciences.  40 (4), 1265–1279 (2017).
  22. Brownstein J. S., Wolfe C. J., Mandl K. D.  Empirical evidence for the effect of airline travel on inter-regional influenza spread in the United States.  PLoS Medicine.  3 (10), e401 (2006).
  23. Viboud C., Miller M. A., Grenfell B. T., Bjørnstad O. N., Simonsen L.  Air travel and the spread of influenza: important caveats.  PLoS Medicine.  3 (11), e503 (2006).
  24. Liu Z., Li R., Wang X., Shang P.  Effects of vehicle restriction policies: Analysis using license plate recognition data in Langfang, China.  Transportation Research Part A: Policy and Practice.  118, 89–103 (2018).
  25. Ji H., Tong H., Wang J., Yan D., Liao Z., Kong Y.  The effectiveness of travel restriction measures in alleviating the COVID-19 epidemic: evidence from Shenzhen, China.  Environmental Geochemistry and Health.  44, 3115–3132 (2022).
  26. Chinazzi M., Davis J. T., Ajelli M., Gioannini C., Litvinova M., Merler S., Piontti A. P. Y., Mu K., Rossi L., Sun K., Viboud C., Xiong X., Yu H., Halloran M. E., Longini I. M. Jr., Vespignani A.  The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak.  Science.  368 (6489), 395–400 (2020).
  27. Kupferschmidt K., Wadman M.  Delta variant triggers new phase in the pandemic.  Science.  372 (6549), 1375–1376 (2021).
  28. Benfatah Y., Khaloufi I., Boutayeb H., Rachik M., Laarabi H.  Optimal control for a discrete time epidemic model with zones evolution.  Communications in Mathematical Biology and Neuroscience.  2022, 51 (2022).
  29. Khaloufi I., Benfatah Y., Moutamanni H., Boutayeb H., Rachik M.  A discrete mathematical model SEIR with the evolution of the regions.  Communications in Mathematical Biology and Neuroscience.  2022, 120 (2022).
  30. Khaloufi I., Benfatah Y., Lafif M., Ghazaoui A., Rachik M.  Optimal control strategy for the administration of the third vaccine dose in the treatment of pandemic COVID-19.  Mathematical Modeling and Computing.  10 (3), 841–853 (2023).
  31. Elyoussoufi L., Kouidere A., Kada D., Balatif O., Daouia A., Rachik M.  On stability analysis study and strategies for optimal control of a mathematical model of hepatitis HCV with the latent state.  Mathematical Modeling and Computing.  10 (1), 101–118 (2023).
  32. Moumine E., Balatif O., Rachik M.  Modeling and mathematical analysis of drug addiction with the study of the effect of psychological and biological treatment, Mathematical Modeling and Computing.  10 (3), 935–943 (2023).
  33. Khaloufi I., Benfatah Y., Laarabi H., Rachik M.  A scenario to fight monkeypox using a mathematical model.  Communications in Mathematical Biology and Neuroscience.  2022, 99 (2022).
  34. El Bhih A., Benfatah Y., Ben Rhila S., Rachik M., El Alami Laaroussi A.  A spatiotemporal prey-predator discrete model and optimal controls for environmental sustainability in the multifishing areas of Morocco.  Discrete Dynamics in Nature and Society.  2020, 2780651 (2020).
  35. Sadki M., Harroudi S., Allali K.  Dynamical analysis of an HCV model with cell-to-cell transmission and cure rate in the presence of adaptive immunity.  Mathematical Modeling and Computing.  9 (3), 579–593 (2022).
  36. Kada D., Kouidere A., Balatif O., Rachik M.  Mathematical modeling of the gaming disorder model with media coverage: optimal control approach.  Mathematical Modeling and Computing.  10 (1), 245–260 (2023).
  37. Khaloufi I., Karim M., Rhila S. B., Laarabi H., Rachik M.  A mathematical model describing the correlation between smokers and tuberculosis patients.  Mathematics in Engineering, Science and Aerospace.  14 (2), 347–361 (2023).