Towards a Nash game strategy approach to blind image deconvolution: a fractional-order derivative variational framework

2024;
: pp. 682–691
https://doi.org/10.23939/mmc2024.03.682
Received: December 03, 2023
Revised: July 19, 2024
Accepted: July 22, 2024

Salah F.-E., Moussaid N., Abassi A., Jadir A.  Towards a Nash game strategy approach to blind image deconvolution: a fractional-order derivative variational framework.  Mathematical Modeling and Computing. Vol. 11, No. 3, pp. 682–691 (2024)

1
LMCSA, FSTM, Hassan II University of Casablanca
2
LMCSA, FSTM, Hassan II University of Casablanca
3
LMCSA, FSTM, Hassan II University of Casablanca
4
FSTG, Cadi Ayyad University, Marrakech

Image restoration is a critical process aimed at recovering degraded images, often impacted by factors including motion blur, sensor blurring, defocused photography, optical aberrations, atmospheric distortions, and noise-induced blur.  The inherent challenge lies in the typical scenario where both the original image and the blur kernel (Point Spread Function, PSF) are unknown.  This restorative process finds applications in various fields, including sensing, medical imaging, astronomy, remote sensing, and criminal investigations.  This paper introduces an innovative approach to blind image deconvolution based on Nash game theory.  Our focus is placed on restoring linearly corrupted images without processing explicit knowledge of the original image or the blur kernel (PSF).  The proposed method formulates blind deconvolution as a two-player static game, with one player dedicated to image deblurring and the other focused on estimating the PSF.  The optimal solution is characterized as Nash equilibrium, resulting in effective image restoration.  Moreover, we present an enhanced game formulation that incorporates fractional-order derivatives.  This unique extension has the potential to improve image restoration accuracy and resilience, leading to breakthroughs in blind image deconvolution and practical applications.

  1. Ayers G. R., Dainty J. C.  Interative blind deconvolution method and its applications.  Optics Letters.  13 (7), 547–549 (1988).
  2. Fergus R., Singh B., Hertzmann A., Roweis S. T., Freeman W. T.  A removing camerashake from a single photograph.  ACM Transactions on Graphics.  25 (3), 787–794 (2006).
  3. Kundur D., Hatzinakos D.  Blind image deconvolution.  IEEE Signal Processing Magazine.  13 (3), 43–64 (1996).
  4. Liu X.  Efficient algorithms for hybrid regularizers based image denoising and deblurring.  Computers & Mathematics with Applications.  69 (7), 675–687 (2015).
  5. Ji H., Liu C.  Motion blur identification from image gradients.  2008 IEEE Conference on Computer Vision and Pattern Recognition. 1–8 (2008).
  6. Molina R., Mateos J., Katsaggelos A.  Blind deconvolution using a variational approach to parameter, image, and blur estimation.  IEEE Transactions on Image Processing.  15 (12), 3715–3727 (2006).
  7. Motohashi S., Nagata T., Goto T., Aoki R., Chen H.  A study on blind image restoration of blurred images using R-map.  2018 International Workshop on Advanced Image Technology (IWAIT).  1–4 (2018).
  8. Rudin L., Osher S., Fatemi E.  Non linear total variation based noise removal algorithms.  Physica D.  60 (1–4), 259–268 (1996).
  9. Chan T. F., Wong C.-K.  Total variation blind deconvolution.  IEEE Transactions on Image Processing.  7 (3), 370–375 (1998).
  10. Semmane F. Z., Moussaid N., Ziani M.  Searching for similar images using Nash game and machine learning.  Mathematical Modeling and Computing.  11 (1), 239–249 (2024).
  11. Salah F.-E., Moussaid N.  Machine learning and similar image-based techniques based on Nash game theory.  Mathematical Modeling and Computing.  11 (1), 120–133 (2024).
  12. Elmoumen S., Moussaid N., Aboulaich R.  Image retrieval using Nash equilibrium and Kalai–Smorodinsky solution.  Mathematical Modeling and Computing.  8 (4), 646–657 (2021).
  13. Meskine D., Moussaid N., Berhich S.  Blind image deblurring by game theory.  NISS'19: Proceedings of the 2nd International Conference on Networking, Information Systems & Security.  31 (2019).
  14. Alaa K., Atounti M., Zirhem M.  Image restoration and contrast enhancement based on a nonlinear reaction-diffusion mathematical model and divide and conquer technique.  Mathematical Modeling and Computing.  8 (3), 549–559 (2021).
  15. Alaa H., Alaa N. E., Aqel F., Lefraich H.  A new Lattice Boltzmann method for a Gray–Scott based model applied to image restoration and contrast enhancement.  Mathematical Modeling and Computing.  9 (2), 187–202 (2022).
  16. Ross B.  A brief history and exposition of the fundamental theory of fractional calculus.  Fractional Calculus and Its Applications.  Lecture Notes in Mathematics. Vol. 457, 1–36 (2006).
  17. Loverro A.  Fractional Calculus: History, Definitions and Applications for the Engineer.  University of Notre Dame: Department of Aerospace and Mechanical Engineering (2004).
  18. Liu S.-C., Chang S.  Dimension estimation of discrete-time fractional Brownian motion with applications to image texture classification.  IEEE Transactions on Image Processing.  6 (8), 1176–1184 (1997).
  19. Ninness B.  Estimation of 1/f noise.  IEEE Transactions on Information Theory.  44 (1), 32–46 (1998).
  20. Engheta N.  On the role of fractional calculus in electromagnetic theory.  IEEE Antennas and Propagation Magazine.  39 (4), 35–46 (1997).
  21. Unser M.  Splines: A perfect fit for signal and image processing.  IEEE Signal Processing Magazine.  16 (6), 22–38 (1999).
  22. Unser M., Blu T.  Fractional splines and wavelets.  SIAM Review.  42 (1), 43–67 (2000).
  23. Aboulaich R., Habbal A., Moussaid N.  Optimisation multicritère: une approche par partage des variables.  ARIMA.  13, 77–89 (2010).
  24. Wang Z., Bovik A. C., Sheikh H. R., Simoncelli E. P.  Image quality assessment: from error visibility to structural similarity.  IEEE Transactions on Image Processing.  13 (4), 600–612 (2004).