Mathematical modeling and computer simulation of locomotion conditions of vibration-driven robots

2024;
: pp. 1211–1220
https://doi.org/10.23939/mmc2024.04.1211
Received: March 08, 2024
Revised: November 20, 2024
Accepted: November 22, 2024

Korendiy V., Kachur O., Kyrychuk V., Markovych B.  Mathematical modeling and computer simulation of locomotion conditions of vibration-driven.  Mathematical Modeling and Computing. Vol. 11, No. 4, pp. 1211–1220 (2024)

1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University

This paper investigates the dynamic behavior and locomotion characteristics of vibration-driven robots with wheeled chassis, focusing on the comparison of two types of vibration exciters: a solenoid-type actuator and a centrifugal (inertial) exciter.  The research methodology involves 3D modeling using SolidWorks software to design the robots, numerical modeling in Mathematica software to simulate their motion and predict kinematic characteristics, and computer simulation in SolidWorks Motion software to validate the modeling results.  The robots utilize overrunning clutches to ensure unidirectional wheel rotation and achieve forward motion through the principle of pure vibratory and vibro-impact locomotion.  The influence of excitation frequency and operational parameters on the robot's speed, acceleration, and displacement is analyzed for both types of exciters.  The results demonstrate the effectiveness of both solenoid and centrifugal exciters in achieving locomotion, with the centrifugal exciter generally providing lower speeds due to utilizing pure vibration excitation and the solenoid-type actuator offering larger speeds due to operating at vibro-impact conditions.  The findings of this study are valuable for researchers and engineers working on the design and optimization of vibration-driven robots for various applications, including pipeline inspection, cleaning, and navigation in challenging environments.

  1. Korendiy V., Kachur O., Gursky V., Kotsiumbas O., Dmyterko P., Nikipchuk S., Danylo Y.  Motion simulation and impact gap verification of a wheeled vibration-driven robot for pipelines inspection.  Vibroengineering Procedia.  41, 1–6 (2022).
  2. Korendiy V., Gursky V., Kachur O., Gurey V., Havrylchenko O., Kotsiumbas O.  Mathematical modeling of forced oscillations of semidefinite vibro-impact system sliding along rough horizontal surface.  Vibroengineering Procedia.  39, 164–169 (2021).
  3. Nguyen V.-D., La N. T.  An improvement of vibration-driven locomotion module for capsule robots.  Mechanics Based Design of Structures and Machines.  50 (5), 1658–1672 (2020).
  4. Tian J., Afebu K. O., Wang Z., Liu Y., Prasad S.  Dynamic analysis of a soft capsule robot self-propelling in the small intestine via finite element method.  Nonlinear Dynamics.  111 (11), 9777–9798 (2023).
  5. Du Z., Fang H., Zhan X., Xu J.  Experiments on vibration-driven stick-slip locomotion: A sliding bifurcation perspective.  Mechanical Systems and Signal Processing.  105, 261–275 (2018).
  6. Xu J., Fang H.  Improving performance: recent progress on vibration-driven locomotion systems.  Nonlinear Dynamics.  98 (4), 2651–2669 (2019).
  7. Nunuparov A., Becker F., Bolotnik N., Zeidis I., Zimmermann K.  Dynamics and motion control of a capsule robot with an opposing spring.  Archive of Applied Mechanics.  89 (10), 2193–2208 (2019).
  8. Li P., Jiang Z.  Bifurcation analysis of stick-slip motion of the vibration-driven system with dry friction.  Mathematical Problems in Engineering.  2018, 2305187 (2018).
  9. Diao B., Zhang X., Fang H., Xu J.  Bi-objective optimization for improving the locomotion performance of the vibration-driven robot.  Archive of Applied Mechanics.  91 (5), 2073–2088 (2021).
  10. Diao B., Zhang X., Fang H., Xu J.  Optimal control of the multi-module vibration-driven locomotion robot.  Journal of Sound and Vibration.  527, 116867 (2022).
  11. Nguyen K.-T., La N.-T., Ho K.-T., Ngo Q.-H., Chu N.-H., Nguyen V.-D.  The effect of friction on the vibro-impact locomotion system: modeling and dynamic response.  Meccanica.  56 (8), 2121–2137 (2021).
  12. Lee H.-S., Park S.-G., Hong M.-P., Lee H.-J., Kim Y.-S.  A study on the manufacture of permanent magnet traction control valve for electronic stability control in electric vehicles.  Applied Sciences.  11 (17), 7794 (2021).
  13. Korendiy V., Kachur O., Gursky V., Gurey V., Pelio R., Kotsiumbas O.  Experimental investigation of kinematic characteristics of a wheeled vibration-driven robot.  Vibroengineering Procedia.  43, 14–20 (2022).
  14. Korendiy V., Kotsiumbas O., Borovets V., Gurey V., Predko R.  Mathematical modeling and computer simulation of the wheeled vibration-driven in-pipe robot motion.  Vibroengineering Procedia.  44, 1–7 (2022).
  15. Loukanov I. A., Stoyanov S. P.  Experimental determination of dynamic characteristics of a vibration-driven robot.  IOSR Journal of Mechanical and Civil Engineering.  12 (4), 62–73 (2015).
  16. Loukanov I. A., Vitliemov V. G., Ivanov I. V.  Dynamics of a mobile mechanical system with vibration propulsion (VibroBot).  International Journal of Research in Engineering and Science.  4 (6), 44–51 (2016).
  17. Loukanov I. A., Vitliemov V. G., Ivanov I. V.  Dynamics of a vibration-driven one-way moving wheeled robot.  IOSR Journal of Mechanical and Civil Engineering.  13 (3), 14–22 (2016).
  18. Chavez J., Böhm V., Becker T. I., Gast S., Zeidis I., Zimmermann K.  Actuators based on a controlled particle-matrix interaction in magnetic hybrid materials for applications in locomotion and manipulation systems.  Physical Sciences Reviews.  7 (11), 1263–1290 (2022).
  19. Demarchi A., Farзoni L., Pinto A., Lang R., Romero R., Silva I.  Modelling a solenoid's valve movement.  Lecture Notes in Computer Science.  11175, 290–301 (2018).
  20. Korendiy V., Kachur O.  Locomotion characteristics of a wheeled vibration-driven robot with an enhanced pantograph-type suspension.  Frontiers in Robotics and AI.  10, 1239137 (2023).
  21. Korendiy V., Lanets O., Kachur O., Dmyterko P., Kachmar R.  Determination of inertia-stiffness parameters and motion modelling of three-mass vibratory system with crank excitation mechanism.  Vibroengineering Procedia.  36, 7–12 (2021).
  22. Badr M. F.  Modelling and simulation of a controlled solenoid.  IOP Conference Series: Materials Science and Engineering.  433 (1), 012082 (2018).
  23. El-Derini M. N.  Mathematical model of a solenoid for energy and force calculations.  Journal of Physics D: Applied Physics.  17 (3), 503–508 (1984).
  24. Peng Z., Chen L., Wei L., Gao W., Yu Q., Ai C.  Analysis and identification of a dynamic model for proportional solenoid.  IEEE Access.  9, 92651–92660 (2021).
  25. Korendiy V., Lanets O., Kachur O., Dmyterko P., Kachmar R.  Determination of inertia-stiffness parameters and motion modelling of three-mass vibratory system with crank excitation mechanism.  Vibroengineering Procedia.  36, 7–12 (2021).
  26. Korendiy V., Gursky V., Kachur O., Dmyterko P., Kotsiumbas O., Havrylchenko O.  Mathematical model and motion analysis of a wheeled vibro-impact locomotion system.  Vibroengineering Procedia.  41, 77–83 (2022).
  27. Korendiy V., Krot P., Kachur O., Gurskyi V.  Analyzing the locomotion conditions of a wheeled vibration-driven system with a V-shaped suspension.  Advances in Design, Simulation and Manufacturing VII (DSMIE 2024).  153–163 (2024).
  28. Hosseini A. M., Arzanpour S., Golnaraghi F., Parameswaran A. M.  Solenoid actuator design and modeling with application in engine vibration isolators.  Journal of Vibration and Control.  19 (7), 1015–1023 (2013).
  29. Yang L., Gao T., Du X., Zhai F., Lu C., Kong X.  Electromagnetic characteristics analysis and structure optimization of high-speed fuel solenoid valves.  Machines.  10 (10), 964 (2022).
  30. Fang H., Wang K. W.  Piezoelectric vibration-driven locomotion systems – Exploiting resonance and bistable dynamics.  Journal of Sound and Vibration.  391, 153–169 (2017).
  31. Korendiy V., Kachur O., Litvin R., Nazar I., Brytkovskyi V., Nikipchuk S., Ostashuk M.  Simulation and experimental testing of locomotion characteristics of a vibration-driven system with a solenoid-type actuator.  Vibroengineering Procedia.  56, 29–35 (2024).