Tourist route optimization with a combined A* algorithm and genetic algorithm

2024;
: pp. 966–977
https://doi.org/10.23939/mmc2024.04.966
Received: January 08, 2024
Revised: August 15, 2024
Accepted: August 16, 2024

Benchekroun Y., Senba H., Haddouch K., El Moutaouakil K.  Tourist route optimization with a combined A* algorithm and genetic algorithm.  Mathematical Modeling and Computing. Vol. 11, No. 4, pp. 966–977 (2024)

1
Engineering, Systems and Applications Laboratory, National School of Applied Sciences-ENSA, Sidi Mohamed Ben Abdellah University
2
Engineering, Systems and Applications Laboratory, National School of Applied Sciences-ENSA, Sidi Mohamed Ben Abdellah University
3
Engineering, Systems and Applications Laboratory, National School of Applied Sciences-ENSA, Sidi Mohamed Ben Abdellah University
4
Engineering, Systems and Applications Laboratory, National School of Applied Sciences-ENSA, Sidi Mohamed Ben Abdellah University

This article contributes to the optimization of routes and circuits, aiming to enhance the overall tourist experience in alignment with smart tourism objectives.  Employing advanced techniques and tools like A*, genetic algorithms, and geographic information systems, the study aims to propose highly efficient paths for city exploration and touristic attraction visits.  It outlines future projections in optimization tools, attempting to integrate artificial intelligence and machine learning technologies to create customized itineraries based on user preferences.  Acknowledging the existing limitations in the field, the article provides a new solution characterized by optimized costs and reduced execution time.  With its primary focus on the city of Fez, the article aims to enhance smart tourism applications by offering personalized and enriched experiences.

  1. https://whc.unesco.org/en/list/170.
  2. Benchekroun Y., Benslimane M., Haddodouch K.  Intelligent Visit Systems: State of Art and Smart Tourism Literature.  International Congress of Engineering and Complex systems (ICECS). (2021).
  3. Pradhan R. K., Shrestha S., Gurung D. B.  Mathematical modeling of mixed-traffic in urban areas.  Mathematical Modeling and Computing.  9 (2), 226–240 (2022).
  4. Păcurar C. M., Albu R.-G., Păcurar V. D.  Tourist Route Optimization in the Context of the COVID-19 Pandemic.  Sustainability.  13 (10), 5492 (2021).
  5. Benchekroun Y., Senba H., Haddouch K.  A novel approach to intelligent touristic visits using Bing Maps and genetic algorithm.  International Conference on Digital Technologies and Applications (ICDTA). 43–53 (2023).
  6. Saffah Z., Hassouna S., Timesli A., Azouani A., Lahmam H.  RBF collocation path-following approach: optimal choice for shape parameter based on genetic algorithm.  Mathematical Modeling and Computing.  8 (4), 770–782 (2021).
  7. Ait Lhadj Lamin S., Raghib A., Abou El Majd B.  Robust multi-objective optimization for solving the RFID network planning problem.  Mathematical Modeling and Computing.  8 (4), 616–626 (2021).
  8. El Moutaouakil K., Ahourag A., Chakir S., Kabbaj Z., Chellack S., Cheggour M., Baizri H.  Hybrid firefly genetic algorithm and integral fuzzy quadratic programming to an optimal Moroccan diet.  Mathematical Modeling and Computing.  10 (2), 338–350 (2023).
  9. Ouiss M., Ettaoufik A., Marzak A., Tragha A.  Genetic algorithm parenting fitness.  Mathematical Modeling and Computing.  10 (2), 566–574 (2023).
  10. Lin S., Kernighan B. W.  An Effective Heuristic Algorithm for the Travelling–Salesman Problem.  Operations Research.  21 (2), 498–516 (1971).
  11. Agushaka J. O., Ezugwu A. E., Abualigah L., Alharbi S. K., Khalifa H. A. E.-W.  Efficient initialization methods for population-based metaheuristic algorithms: a comparative study.  Archives of Computational Methods in Engineering.  30 (3), 1727–1787 (2023).
  12. El Moutaouakil K., El Ouissari A., Baizri H., Chellak S., Cheggour M.  Multi-objectives optimization and convolution fuzzy C-means: control of diabetic population dynamic.  RAIRO Operations Research.  56 (5), 3245–3256 (2022).
  13. El Moutaouakil K., Baizri H., Chellak S.  Optimal fuzzy deep daily nutrients requirements representation: Application to optimal Morocco diet problem.  Mathematical Modeling and Computing.  9 (3), 607–615 (2022).
  14. Sharma S., Kumar V.  Application of Genetic Algorithms in Healthcare: A Review.  Next Generation Healthcare Informatics.  75–86 (2022).
  15. Sivanandam S. N., Deepa S. N.  Principles of Soft Computing.  Wiley, India (2018).
  16. Guo-Mei H.  Tourism Route Design and Optimization Based on Heuristic Algorithm.  2016 Eighth International Conference on Measuring Technology and Mechatronics Automation (ICMTMA). 449–452 (2016).
  17. Xiujuan Ma.  Intelligent Tourism Route Optimization Method Based on the Improved Genetic Algorithm.  2016 International Conference on Smart Grid and Electrical Automation (ICSGEA).  124–127 (2016).
  18. Hart P. E., Nilsson N. J., Raphael B.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths.  IEEE Transactions on Systems Science and Cybernetics.  4 (2), 100–107 (1968).
  19. Foead D., Ghifari A., Kusuma M. B., Hanafiah N., Gunawan E.  A Systematic Literature Review of A* Pathfinding.  Procedia Computer Science.  179, 507–514 (2021).
  20. Pasandi L., Hooshmand M., Rahbar M.  Modified A* Algorithm integrated with ant colony optimization for multi-objective route-finding; case study: Yazd.  Applied Soft Computing.  113 (A), 107877 (2021).
  21. Neetu G., Bobba B.  Identification of optimum path for tourist places using GIS based network analysis: A case study of New Delhi.  IJARSGG.  1, 34–38 (2013).
  22. Lau G., McKercher B.  Understanding tourist movement patterns in a destination: A GIS approach.  Tourism and Hospitality Research.  7 (1), 39–49 (2006).