The Scheffe’s method in the study of mathematical model of the polymeric hydrogels composite structures optimization

2019;
: pp. 258–267
https://doi.org/10.23939/mmc2019.02.258
Received: August 18, 2019
Revised: October 14, 2019
Accepted: October 16, 2019

Mathematical Modeling and Computing, Vol. 6, No. 2, pp. 258–267 (2019)

1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University
5
Hetman Petro Sahaidachnyi National Army Academy
6
Lviv Polytechnic National University

Mathematical modeling of 2-hydroxyethylmethacrylate with polyvinylpyrrolidone copolymerization process according to technological parameters of the exothermic reaction has been carried out by Scheffe’s simplex-lattice planning method.  Optimization of polymer monomer composition formula has been carried out and the regression equations of the main parameters of exothermic polymerization –– gelation time, the duration of the gel effect area, and the maximum temperature of the exotherm have been obtained.  Using the mathematical model obtained, the content of the initial composition has been defined.  The exothermic effects of such initial composition polymerization provide the optimal technological parameters of metal ions reduction stage during polymerization.

  1. Pukach P., Il’kiv V., Nytrebych Z., Vovk M., Pukach P.  On the asymptotic methods of the mathematical models of strongly nonlinear physical systems.  In: Shakhovska N., Stepashko V. (eds.) Advances in Intelligent Systems and Computing II. CSIT 2017.  Advances in Intelligent Systems and Computing. 689, 421--433 (2018).
  2. Pukach P.  Investigation of Bending Vibrations in Voigt–Kelvin Bars with Regard for Nonlinear Resistance Forces.  Journal of Mathematical Sciences. 215 (1), 71--78 (2016).
  3. Pukach P., Shakhovska K.  The mathematical method development of decisions supporting concerning products placement based on analysis of market basket content.  2017 14th International Conference The Experience of Designing and Application of CAD Systems in Microelectronics (CADSM). 347--350 (2017).
  4. Nebesnyi R., Ivasiv V., Pikh Z., Zhyznevskyi V., Dmytruk Yu.  The kinetic of the gas phase aldol condensation reaction of propionic acid with formaldehyde on B2O3–P2O5–WO3/SiO2 catalyst.  Chemistry and Chemical Technology. 8 (1), 29--34 (2014).
  5. Moravskyi V., Dziaman I., Suberliak S., Kuznetsova M., Tsimbalista T., Dulebova L.  Research into kinetic patterns of chemical metallization of powderlike polyvinylchloride.  Eastern-European Journal of Enterprise Technologies. 4 (12), 50--57 (2017).
  6. Kostrobij P., Ryzha I., Hnativ B.  Modeling of the effect of carbon dioxide desorption on carbon monoxide oxidation process on platinum catalyst surface.  Mathematical Modeling and Computing. 5 (1), 27--33 (2018).
  7. Medvedevskikh Y. G., Kytsya A. R., Bazylyak L. I., Turovsky A. A., Zaikov G. E.  Stationary and non-stationary kinetics of the photoinitiated polymerization.  CRC Press  (2004).
  8. Hayvas B., Dmytruk V., Torskyy A., Dmytruk A.  On methods of mathematical modeling of drying dispersed materials.  Mathematical Modeling and Computing. 4 (2), 139--147 (2017).
  9. Brailo M. V., Buketov A. V., Kobelnyk O. S., Yakushchenko S. V., Sapronova A. V., Sapronov O. O., Vasylenko A. O.  Optimization of the content of additives in epoxy-polyester binder to increase the cohesive strength of composites.  Scientific Bulletin of UNFU. 28 (11), 71 (2018), (in Ukrainian).
  10. Kostrobij P., Beznosiuk A., Dmytruk V., Polovyi V.  Modeling of Pt-catalyst surface influence on characteristics of oxygen and carbon monoxide molecules.  Mathematical Modeling and Computing. 3 (1), 43--50 (2016).
  11. Suberlyak O. V., Krasins'kyi V. V., Shapoval I. M., Grytsenko О. M.  Influence of the mechanism and parameters of hardening of modified novolac phenol-formaldehyde resins on the physicomechanical properties of the composite.  Materials Science. 46 (5), 669--678  (2011).
  12. Baran N. M., Krasinskyy V. V., Zemke V. M., Grytsenko O. M., Burcha T. M.  Prohnozuvannya vlastyvostey modyfikovanykh poliamidnykh membran iz zastosuvannyam matematychnoho modelyuvannya skladu polimernoyi sumishi.  Visnyk Natsionalnoho universytetu "Lvivska politekhnika". 726, 437--443 (2012), (in Ukrainian).
  13. Zaikov G. E., Bazylyak L. I., Aneli J. N.  Polymers for Advanced Technologies: Processing, Characterization and Applications.  CRC Press, Toronto (2013).
  14. Bogdanova V. V., Kobets O. I., Lyudko A. A., Kirlitsa V. P.  Optimizatsiya ognezashchitno-ognetushashchikh svoystv sostava dlya predotvrashcheniya i lokalizatsii pozharov v prirodnom komplekse metodom matematicheskogo planirovaniya eksperimenta.  Vestnik Komandno-inzhenernogo instituta MCHS Respubliki Belarus. 1 (15), 32--39 (2012), (in Russian).
  15. Akhnazarova S. L., Kafarov V. V.  Metody optimizatsii eksperimenta v khimicheskoy tekhnologii.  Moskva, Vysshaya shkola (1985), (in Russian).
  16. Afonin Yu. S., Dubrovin V. I.  Modelirovanie sostavov smesej metodom simpleksnyh reshetok.  Radioelektronika. Informatyka. Upravlinnya. 2, 60--63 (2004), (in Russian).
  17. Akhmetzhanov A. M., Urbanov A. V., Potapova Ye. N.  Primeneniye metodov planirovaniya eksperimenta pri izuchenii kompleksnogo vliyaniya dobavok na svoystva vyazhuchego.  Uspekhi v khimii i khimicheskoy tekhnologii. 30 (7), 14--16 (2016), (in Russian).
  18. Hanemann T., Szabo D. V.  Polymer-Nanoparticle composites: from synthesis to modern applications.  Materials. 3, 3468--3517 (2010).
  19. Hule R. A., Pochan D. J.  Polymer Nanocomposites for biomedical applications.  MRS. Bulletin. 32, 354--358 (2007).
  20. Moravskyi V., Dziaman I., Suberliak S., Grytsenko O., Kuznetsova M.  Features of the production of metal-filled composites by metallization of polymeric raw materials.  2017 IEEE 7th International Conference Nanomaterials: Application & Properties (NAP). 03NNSA18-1--03NNSA18-4 (2017).
  21. Zare Y., Shabani I.  Polymer/metal nanocomposites for biomedical applications.  Materials Science and Engineering. 60, 195--203 (2016).
  22. Nicolais L., Carotenuto G.  Metal-polymer nanocomposites.  New Jersey, John Wiley and Sons (2005).
  23. Suberlyak O., Grytsenko O., Kochubei V.  The role of FeSO4 in the obtaining of polyvinylpirolidone copolymers.  Chemistry and Chemical Technology. 9, 429--434 (2015).
  24. Schexnailder P., Schmidt G.  Nanocomposite polymer hydrogels.  Colloid and Polymer Science. 287 (1), 1--11 (2009).
  25. Haraguchi K.  Nanocomposite hydrogels.  Current Opinion in Solid State and Materials Science. 11 (3--4), 47--54 (2007).
  26. Suberlyak O. V., Hrytsenko O. M., Hishchak K. Y.  Influence of the  metal surface of powder filler om the structure and properties of composite materials based on the co-polymers of methacrylates with polyvinylpyrrolidone.  Materials Science. 52 (2), 155--164 (2016).
  27. Thomas V., Namdeo M., Murali Mohan Y., Bajpai S. K., Bajpai M.  Hydrogel and microgel metal nanocomposites: a facile nanotechnological approach.  Journal of Macromolecular Science. 45, 107--119 (2007).
  28. Grytsenko О., Suberliak O., Moravskyi V., Gaiduk A.  Investigation of nickel chemical precipitation kinetics.  Eastern-European Journal of Enterprise Technologies. 1 (6), 26--31 (2016), (in Ukrainian).
  29. Grytsenko O., Gajdos I., Spisak E., Krasinskyi V., Suberlyak O.  Novel Ni/pHEMA-gr-PVP Composites Obtained by Polymerization with Simultaneous Metal Deposition: Structure and Properties.  Materials. 12 (12), 1956 (2019).
  30. Grytsenko О., Pokhmurska A., Suberliak S., Kushnirchuk M., Panas M., Moravskyi V., Kovalchuk R.  Technological features in obtaining highly effective hydrogel dressings for medical purposes.  Eastern-European Journal of Enterprise Technologies. 6 (6), 6--13 (2018).