Solving Stefan's linear problem for drying cylindrical timber under quasi-averaged formulation

: pp. 150–156
Received: December 16, 2020
Revised: March 19, 2021
Accepted: March 26, 2021

Mathematical Modeling and Computing, Vol. 8, No. 2, pp. 150–156 (2021)

Centre of Mathematical Modelling, IAPMM of National Academy of Sciences of Ukraine
Lviv Polytechnic National University; Centre of Mathematical Modelling, IAPMM of Ukrainian National Academy of Sciences
Lviv Polytechnic National University
Lviv Polytechnic National University

The plain problem of drying of a cylindrical timber beam in average statement is considered.  The thermal diffusivity coefficients are expressed in terms of the porosity of the timber, the density of the components of vapour, air, and timber skeleton.  The problem of mutual phase distribution during drying of timber has been solved using the energy balance equation.  The indicators of the drying process of the material depend on the correct choice and observance of the parameters of the drying medium.

  1. Gnativ Z. Ya., Ivashchuk O. S., Hrynchuk Yu. M., Reutskyi V. V., Koval I. Z., Vashkurak Yu. Z.  Modeling of internal diffusion mass transfer during filtration drying of capillary-porous material.  Mathematical Modeling and Computing. 7 (1), 22–28 (2020).
  2. Kaletnik G., Tsurkan O., Rymar T., Stanislavchuk O.  Determination of the kinetics of the process of pumpkin seeds vibrational convective drying.  Eastern-European Journal of Enterprise Technologies. 1 (8), 50–57 (2020).
  3. Hayvas B., Dmytruk V., Torskyy A., Dmytruk A.  On methods of mathematical modelling of drying dispersed materials.  Mathematical Modeling and Computing. 4 (2), 139–147 (2017).
  4. Ugolev B., Skuratov N. Modeling the wood drying process.  Collection of scientific works of MLTI. 247, 133–41 (1992).
  5. Shubin G.  Drying and heat treatment of wood.  Moscow, Forest Industry (1990), (in Russian).
  6. Tikhonov A., Samarskii A.  Equations of mathematical physics.  Moscow, Nauka (1972), (in Russian).
  7. Markovych B.  Investigation of effective potential of electron-ion interaction in semibounded metal.  Mathematical Modeling and Computing. 5 (2), 184–192 (2018).
  8. Gupta S. C.  The Classical Stefan Problem. 2nd edition.  Elsevier, USA, 750 (2017).
  9. Kostrobij P., Markovych B., Viznovych B., Zelinska I., Tokarchuk M.  Generalized Cattaneo–Maxwell diffusion equation with fractional derivatives. Dispersion relations.  Mathematical Modeling and Computing.  6 (1), 58–68 (2019).
  10. Kostrobij P. P., Markovych B. M., Ryzha I. A., Tokarchuk M. V.  Generalized kinetic equation with spatiotemporal nonlocality.  Mathematical Modeling and Computing. 6 (2), 289–296 (2019).
  11. Sokolovskyy Y., Levkovych M., Sokolovskyy I.  The study of heat transfer and stress-strain state of a material, taking into account its fractal structure.  Mathematical Modeling and Computing. 7 (2), 400–409 (2020).
  12. Carslaw H. S., Jaeger J. C.  Conduction of Heat in Solids.  Oxford University, London (1959).
  13. Lenyuk M., Mikhalevska G.  Integral transformations of the Kontorovich–Lebedev type.  Chernivtsi Prut. (2002), (in Ukrainian).
  14. Fedotkin I. M., Burlyai I. Yu., Ryumshin N. A.  Mathematical modeling of technological processes. Kiev, Technics (2002), (in Russian).